Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: Implication for protein aggregation and immune response

[1]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[2]  M. Sporn,et al.  Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis. , 2011, Free radical biology & medicine.

[3]  C. Haass,et al.  TDP-43 and FUS: a nuclear affair , 2011, Trends in Neurosciences.

[4]  V. Crippa,et al.  Muscle cells and motoneurons differentially remove mutant SOD1 causing familial amyotrophic lateral sclerosis , 2011, Journal of neurochemistry.

[5]  F. Baas,et al.  Innate and adaptive immunity in amyotrophic lateral sclerosis: Evidence of complement activation , 2011, Neurobiology of Disease.

[6]  Cole M. Haynes,et al.  Mitochondrial protein quality control during biogenesis and aging. , 2011, Trends in biochemical sciences.

[7]  A. Gitler,et al.  Molecular Determinants and Genetic Modifiers of Aggregation and Toxicity for the ALS Disease Protein FUS/TLS , 2011, PLoS biology.

[8]  O. Hardiman,et al.  Amyotrophic lateral sclerosis , 2011, The Lancet.

[9]  M. Glickman,et al.  Proteasome Activator 200: The HEAT is on…* , 2011, Molecular & Cellular Proteomics.

[10]  W. Robberecht,et al.  Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease , 2011, The Lancet Neurology.

[11]  T. Hortobágyi,et al.  Optineurin inclusions occur in a minority of TDP-43 positive ALS and FTLD-TDP cases and are rarely observed in other neurodegenerative disorders , 2011, Acta Neuropathologica.

[12]  Yong-jian Liu,et al.  FUS Transgenic Rats Develop the Phenotypes of Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration , 2011, PLoS genetics.

[13]  R. Takahashi,et al.  Optineurin is co-localized with FUS in basophilic inclusions of ALS with FUS mutation and in basophilic inclusion body disease , 2011, Acta Neuropathologica.

[14]  Suneil K. Kalia,et al.  Ubiquitinylation of α-Synuclein by Carboxyl Terminus Hsp70-Interacting Protein (CHIP) Is Regulated by Bcl-2-Associated Athanogene 5 (BAG5) , 2011, PloS one.

[15]  Lei Mao,et al.  Sulphoraphane enhances aquaporin-4 expression and decreases spinal cord oedema following spinal cord injury , 2011, Brain injury.

[16]  K. Bhat,et al.  Proteolytic and non-proteolytic roles of ubiquitin and the ubiquitin proteasome system in transcriptional regulation. , 2011, Biochimica et biophysica acta.

[17]  J. Trojanowski,et al.  Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. , 2011, The Journal of clinical investigation.

[18]  D. Ito,et al.  Nuclear transport impairment of amyotrophic lateral sclerosis‐linked mutations in FUS/TLS , 2011, Annals of neurology.

[19]  P. Gordon Amyotrophic Lateral Sclerosis , 2011, CNS Drugs.

[20]  Adriano Chiò,et al.  The epidemiology and treatment of ALS: Focus on the heterogeneity of the disease and critical appraisal of therapeutic trials , 2011, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[21]  K. Hashimoto,et al.  Muscle Atrophy and Motor Neuron Degeneration in Human NEDL1 Transgenic Mice , 2010, Journal of biomedicine & biotechnology.

[22]  Sonja W. Scholz,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2010, Neuron.

[23]  M. de Carvalho,et al.  Diagnosis, pathogenesis and therapeutic targets in amyotrophic lateral sclerosis. , 2010, CNS & neurological disorders drug targets.

[24]  Y. Qiu,et al.  Processing of Optineurin in Neuronal Cells* , 2010, The Journal of Biological Chemistry.

[25]  C. Hetz,et al.  Amyotrophic lateral sclerosis pathogenesis: a journey through the secretory pathway. , 2010, Antioxidants & redox signaling.

[26]  A. Henn,et al.  Reduced Immunoproteasome Formation and Accumulation of Immunoproteasomal Precursors in the Brains of Lymphocytic Choriomeningitis Virus-Infected Mice , 2010, The Journal of Immunology.

[27]  Wei Yan,et al.  The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice , 2010, Acta Pharmacologica Sinica.

[28]  Han-Jou Chen,et al.  Characterization of the Properties of a Novel Mutation in VAPB in Familial Amyotrophic Lateral Sclerosis , 2010, The Journal of Biological Chemistry.

[29]  L. Petrucelli,et al.  Tar DNA Binding Protein-43 (TDP-43) Associates with Stress Granules: Analysis of Cultured Cells and Pathological Brain Tissue , 2010, PloS one.

[30]  I. Mackenzie,et al.  TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia , 2010, The Lancet Neurology.

[31]  C. Bendotti,et al.  A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases , 2010, Autophagy.

[32]  Jeffery N Agar,et al.  Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS , 2010, Nature Neuroscience.

[33]  Jong-Bok Yoon,et al.  ASK1 Negatively Regulates the 26 S Proteasome*♦ , 2010, The Journal of Biological Chemistry.

[34]  C. Garrido,et al.  Sulforaphane Activates Heat Shock Response and Enhances Proteasome Activity through Up-regulation of Hsp27* , 2010, The Journal of Biological Chemistry.

[35]  C. Bendotti,et al.  The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). , 2010, Human molecular genetics.

[36]  V. Shoshan-Barmatz,et al.  Misfolded Mutant SOD1 Directly Inhibits VDAC1 Conductance in a Mouse Model of Inherited ALS , 2010, Neuron.

[37]  P. Kloetzel,et al.  Immunoproteasomes Preserve Protein Homeostasis upon Interferon-Induced Oxidative Stress , 2010, Cell.

[38]  C. Bendotti,et al.  Unraveling the complexity of amyotrophic lateral sclerosis: recent advances from the transgenic mutant SOD1 mice. , 2010, CNS & neurological disorders drug targets.

[39]  Johan Jacobsson,et al.  Novel Antibodies Reveal Inclusions Containing Non-Native SOD1 in Sporadic ALS Patients , 2010, PloS one.

[40]  Pinar Mesci,et al.  Author manuscript, published in "Journal of Neural Transmission 2010;117(8):981-1000" DOI: 10.1007/s00702-010-0429-0 A G Barbeito et al. Motor neuron-immune interactions Motor neuron- immune interactions: the vicious circle of ALS , 2010 .

[41]  J. Trojanowski,et al.  TDP-43 Mediates Degeneration in a Novel Drosophila Model of Disease Caused by Mutations in VCP/p97 , 2010, The Journal of Neuroscience.

[42]  E. Mugnaini,et al.  FUS‐immunoreactive inclusions are a common feature in sporadic and non‐SOD1 familial amyotrophic lateral sclerosis , 2010, Annals of neurology.

[43]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[44]  Robert H. Brown,et al.  ALS-linked mutant SOD1 damages mitochondria by promoting conformational changes in Bcl-2 , 2010, Human molecular genetics.

[45]  S. Perrin,et al.  From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis , 2010, Nature Genetics.

[46]  D. Cleveland,et al.  TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. , 2010, Human molecular genetics.

[47]  C. M. Freria,et al.  Major histocompatability complex class I expression and glial reaction influence spinal motoneuron synaptic plasticity during the course of experimental autoimmune encephalomyelitis , 2010, The Journal of comparative neurology.

[48]  Paul G. Ince,et al.  Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS) , 2010, PloS one.

[49]  K. Sadre-Bazzaz,et al.  Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. , 2010, Molecular cell.

[50]  Do Hee Lee,et al.  CHIP promotes the degradation of mutant SOD1 by reducing its interaction with VCP and S6/S6′ subunits of 26S proteasome , 2010 .

[51]  M. Piccinini,et al.  TDP‐43 Redistribution is an Early Event in Sporadic Amyotrophic Lateral Sclerosis , 2010, Brain pathology.

[52]  R. Bowser,et al.  Transgenic Rat Model of Neurodegeneration Caused by Mutation in the TDP Gene , 2010, PLoS genetics.

[53]  S. Pereson,et al.  TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration , 2010, Proceedings of the National Academy of Sciences.

[54]  G. Rouleau,et al.  Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. , 2010, Human molecular genetics.

[55]  M. Figueiredo-Pereira,et al.  Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications , 2010, Apoptosis.

[56]  C. Oliveira,et al.  Frontiers in Aging Neuroscience Aging Neuroscience Perspective Article Parkinson's Disease Etiopathogenesis Cross-talk between Mitochondria and Proteasome in Parkinson's Disease Pathogenesis , 2022 .

[57]  Fumiaki Tanaka,et al.  Dorfin ameliorates phenotypes in a transgenic mouse model of amyotrophic lateral sclerosis , 2010, Journal of neuroscience research.

[58]  S. Appel,et al.  T cell-microglial dialogue in Parkinson's disease and amyotrophic lateral sclerosis: are we listening? , 2010, Trends in immunology.

[59]  B. Dubois,et al.  FUS mutations in frontotemporal lobar degeneration with amyotrophic lateral sclerosis. , 2010, Journal of Alzheimer's disease : JAD.

[60]  R. Bandopadhyay,et al.  Pathogenesis of Parkinson's disease: emerging role of molecular chaperones. , 2010, Trends in molecular medicine.

[61]  M. Groettrup,et al.  Proteasomes in immune cells: more than peptide producers? , 2010, Nature Reviews Immunology.

[62]  T. Iwaki,et al.  Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation , 2010, Acta Neuropathologica.

[63]  D. Piwnica-Worms,et al.  Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease , 2009, The Journal of cell biology.

[64]  D. Cleveland,et al.  Non–cell autonomous toxicity in neurodegenerative disorders: ALS and beyond , 2009, The Journal of cell biology.

[65]  Tom Maniatis,et al.  Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice , 2009, Proceedings of the National Academy of Sciences.

[66]  M. Strong,et al.  Characterization of Detergent-Insoluble Proteins in ALS Indicates a Causal Link between Nitrative Stress and Aggregation in Pathogenesis , 2009, PloS one.

[67]  Hitoshi Takahashi,et al.  Involvement of CHOP, an ER-stress apoptotic mediator, in both human sporadic ALS and ALS model mice , 2009, Neurobiology of Disease.

[68]  Guanghui Wang,et al.  Gp78, an ER associated E3, promotes SOD1 and ataxin-3 degradation. , 2009, Human molecular genetics.

[69]  N. Cairns,et al.  TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration , 2009, Proceedings of the National Academy of Sciences.

[70]  S. Yanagi,et al.  Mitochondrial ubiquitin ligase MITOL ubiquitinates mutant SOD1 and attenuates mutant SOD1-induced reactive oxygen species generation. , 2009, Molecular biology of the cell.

[71]  G. Rouleau,et al.  A Mutation that Creates a Pseudoexon in SOD1 Causes Familial ALS , 2009, Annals of human genetics.

[72]  H. Kretzschmar,et al.  A new subtype of frontotemporal lobar degeneration with FUS pathology. , 2009, Brain : a journal of neurology.

[73]  S. Cullheim,et al.  Classical Major Histocompatibility Complex Class I Molecules in Motoneurons: New Actors at the Neuromuscular Junction , 2009, The Journal of Neuroscience.

[74]  G. Comi,et al.  Mutations of FUS gene in sporadic amyotrophic lateral sclerosis , 2009, Journal of Medical Genetics.

[75]  M. Meisler,et al.  Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2 , 2009, Human molecular genetics.

[76]  D. Vocadlo,et al.  Mislocalization of TDP-43 in the G93A mutant SOD1 transgenic mouse model of ALS , 2009, Neuroscience Letters.

[77]  D. Finley,et al.  Recognition and processing of ubiquitin-protein conjugates by the proteasome. , 2009, Annual review of biochemistry.

[78]  G. Mora,et al.  Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process , 2009, Journal of Neuroimmunology.

[79]  G. Manfredi,et al.  Mitochondrial function, morphology, and axonal transport in amyotrophic lateral sclerosis. , 2009, Antioxidants & redox signaling.

[80]  C. Crosio,et al.  Oligomerization of mutant SOD1 in mitochondria of motoneuronal cells drives mitochondrial damage and cell toxicity. , 2009, Antioxidants & redox signaling.

[81]  Xuejun Wang,et al.  Interplay between the ubiquitin-proteasome system and autophagy in proteinopathies. , 2009, International journal of physiology, pathophysiology and pharmacology.

[82]  P. Caroni,et al.  A role for motoneuron subtype–selective ER stress in disease manifestations of FALS mice , 2009, Nature Neuroscience.

[83]  M. Pennuto,et al.  Post-translational modifications of expanded polyglutamine proteins: impact on neurotoxicity. , 2009, Human Molecular Genetics.

[84]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[85]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[86]  Robert H. Brown,et al.  Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. , 2009, American journal of human genetics.

[87]  J. Rothstein,et al.  Current hypotheses for the underlying biology of amyotrophic lateral sclerosis , 2009, Annals of neurology.

[88]  S. Appel CD4+ T cells mediate cytotoxicity in neurodegenerative diseases. , 2008, The Journal of clinical investigation.

[89]  Jinsy A. Andrews,et al.  Amyotrophic lateral sclerosis: Clinical management and research update , 2009, Current neurology and neuroscience reports.

[90]  C. Cheroni,et al.  Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis. , 2009, Human molecular genetics.

[91]  Suzanne Tydlacka,et al.  Differential Activities of the Ubiquitin–Proteasome System in Neurons versus Glia May Account for the Preferential Accumulation of Misfolded Proteins in Neurons , 2008, The Journal of Neuroscience.

[92]  J. Taylor,et al.  Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. , 2008, Biochimica et biophysica acta.

[93]  I. Chiu,et al.  T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS , 2008, Proceedings of the National Academy of Sciences.

[94]  Xiao-Jiang Li,et al.  Intracellular degradation of misfolded proteins in polyglutamine neurodegenerative diseases , 2008, Brain Research Reviews.

[95]  S. Petri,et al.  Nuclear Erythroid 2-Related Factor 2-Antioxidative Response Element Signaling Pathway in Motor Cortex and Spinal Cord in Amyotrophic Lateral Sclerosis , 2008, Journal of neuropathology and experimental neurology.

[96]  K. Talbot,et al.  TDP-43 expression in mouse models of amyotrophic lateral sclerosis and spinal muscular atrophy , 2008, BMC Neuroscience.

[97]  T. Pandita,et al.  Role for proteasome activator PA200 and postglutamyl proteasome activity in genomic stability , 2008, Proceedings of the National Academy of Sciences.

[98]  S. Appel,et al.  CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS , 2008, Proceedings of the National Academy of Sciences.

[99]  M. Kwak,et al.  Renal protection by 3H-1,2-dithiole-3-thione against cisplatin through the Nrf2-antioxidant pathway. , 2008, Biochemical pharmacology.

[100]  Honglin Luo,et al.  REGγ, a proteasome activator and beyond? , 2008, Cellular and Molecular Life Sciences.

[101]  Hermann Schindelin,et al.  Structural Insights into E1-Catalyzed Ubiquitin Activation and Transfer to Conjugating Enzymes , 2008, Cell.

[102]  J. Trojanowski,et al.  Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2008, The American journal of pathology.

[103]  J. Agar,et al.  Proteasomes remain intact, but show early focal alteration in their composition in a mouse model of amyotrophic lateral sclerosis , 2008, Journal of neurochemistry.

[104]  Christos G. Gkogkas,et al.  VAPB interacts with and modulates the activity of ATF6. , 2008, Human molecular genetics.

[105]  Takanori Yokota,et al.  Als-linked Mutant Sod1 Induces Er Stress-and Ask1-dependent Motor Neuron Death by Targeting Derlin-1 -induced Cell Death Remains Controversial. Here We Show That Sod1 Mut Specifically Interacted with Derlin-1, a Component of Endoplasmic Reticulum (er)-associated Degradation (erad) Machinery and Trig , 2022 .

[106]  K. Talbot,et al.  Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS , 2008, Progress in Neurobiology.

[107]  Murray Grossman,et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis , 2008, The Lancet Neurology.

[108]  V. Blank Small Maf proteins in mammalian gene control: mere dimerization partners or dynamic transcriptional regulators? , 2008, Journal of molecular biology.

[109]  Alberto Ferri,et al.  Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. , 2008, Antioxidants & redox signaling.

[110]  J. McCabe,et al.  Alterations of cerebral cortex and hippocampal proteasome subunit expression and function in a traumatic brain injury rat model , 2007, Journal of neurochemistry.

[111]  N. Mizushima,et al.  Autophagosomes in GFP-LC3 Transgenic Mice. , 2008, Methods in molecular biology.

[112]  M. Kwak,et al.  Induction of Nrf2-regulated genes by 3H-1, 2-dithiole-3-thione through the ERK signaling pathway in murine keratinocytes. , 2007, European journal of pharmacology.

[113]  H. Cai,et al.  The G59S Mutation in p150glued Causes Dysfunction of Dynactin in Mice , 2007, The Journal of Neuroscience.

[114]  L. Zinman,et al.  Evidence That TDP-43 is Not the Major Ubiquitinated Target Within the Pathological Inclusions of Amyotrophic Lateral Sclerosis , 2007, Journal of neuropathology and experimental neurology.

[115]  M. Portero-Otín,et al.  Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. , 2007, Brain : a journal of neurology.

[116]  S. Kato Amyotrophic lateral sclerosis models and human neuropathology: similarities and differences , 2007, Acta Neuropathologica.

[117]  B. Traynor,et al.  Genetics of sporadic amyotrophic lateral sclerosis. , 2007, Human molecular genetics.

[118]  D. Klionsky,et al.  Autophagosome formation: core machinery and adaptations , 2007, Nature Cell Biology.

[119]  L. Ferraiuolo,et al.  Microarray Analysis of the Cellular Pathways Involved in the Adaptation to and Progression of Motor Neuron Injury in the SOD1 G93A Mouse Model of Familial ALS , 2007, The Journal of Neuroscience.

[120]  L. Barbeito,et al.  Mitochondrial Superoxide Production and Nuclear Factor Erythroid 2-Related Factor 2 Activation in p75 Neurotrophin Receptor-Induced Motor Neuron Apoptosis , 2007, The Journal of Neuroscience.

[121]  L. Martini,et al.  Aggregation and proteasome: The case of elongated polyglutamine aggregation in spinal and bulbar muscular atrophy , 2007, Neurobiology of Aging.

[122]  L. Kaer,et al.  Assessing the role of immuno-proteasomes in a mouse model of familial ALS , 2007, Experimental Neurology.

[123]  P. Riso,et al.  Mutation of SOD1 in ALS: a gain of a loss of function. , 2007, Human molecular genetics.

[124]  E. Pioro,et al.  Lack of TDP-43 abnormalities in mutant SOD1 transgenic mice shows disparity with ALS , 2007, Neuroscience Letters.

[125]  Jung-Ae Kim,et al.  Tissue specific increase of the catalytic subunits of the 26S proteasome by indirect antioxidant dithiolethione in mice: enhanced activity for degradation of abnormal protein. , 2007, Life sciences.

[126]  P. Fraser,et al.  SUMO on the road to neurodegeneration. , 2007, Biochimica et biophysica acta.

[127]  Oliver Kerscher,et al.  SUMO junction—what's your function? , 2007, EMBO reports.

[128]  Fumiaki Tanaka,et al.  CHIP Overexpression Reduces Mutant Androgen Receptor Protein and Ameliorates Phenotypes of the Spinal and Bulbar Muscular Atrophy Transgenic Mouse Model , 2007, The Journal of Neuroscience.

[129]  J. Trojanowski,et al.  Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations , 2007, Annals of neurology.

[130]  Murray Grossman,et al.  TDP-43-Positive White Matter Pathology in Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions , 2007, Journal of neuropathology and experimental neurology.

[131]  O. Isacson,et al.  Proteasome Activator Enhances Survival of Huntington's Disease Neuronal Model Cells , 2007, PloS one.

[132]  A. Salminen,et al.  Pyrrolidine Dithiocarbamate Inhibits Induction of Immunoproteasome and Decreases Survival in a Rat Model of Amyotrophic Lateral Sclerosis , 2007, Molecular Pharmacology.

[133]  X. Yao,et al.  SUMO-1 modification increases human SOD1 stability and aggregation , 2006, Neuroscience Research.

[134]  Sebastiano Cavallaro,et al.  Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis , 2007, BMC Genomics.

[135]  M. Salmona,et al.  Insoluble Mutant SOD1 Is Partly Oligoubiquitinated in Amyotrophic Lateral Sclerosis Mice* , 2006, Journal of Biological Chemistry.

[136]  K. Wada,et al.  Degradation of Amyotrophic Lateral Sclerosis-linked Mutant Cu,Zn-Superoxide Dismutase Proteins by Macroautophagy and the Proteasome* , 2006, Journal of Biological Chemistry.

[137]  M. Hochstrasser,et al.  Modification of proteins by ubiquitin and ubiquitin-like proteins. , 2006, Annual review of cell and developmental biology.

[138]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[139]  D. Cleveland,et al.  ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors , 2006, Neuron.

[140]  M. McGrath,et al.  MCP-1 chemokine receptor CCR2 is decreased on circulating monocytes in sporadic amyotrophic lateral sclerosis (sALS) , 2006, Journal of Neuroimmunology.

[141]  Robert H. Brown,et al.  Molecular biology of amyotrophic lateral sclerosis: insights from genetics , 2006, Nature Reviews Neuroscience.

[142]  M. Kwak,et al.  Induction of 26S proteasome subunit PSMB5 by the bifunctional inducer 3-methylcholanthrene through the Nrf2-ARE, but not the AhR/Arnt-XRE, pathway. , 2006, Biochemical and biophysical research communications.

[143]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[144]  P. Fraser,et al.  Small Ubiquitin-like Modifier (SUMO) Modification of Natively Unfolded Proteins Tau and α-Synuclein* , 2006, Journal of Biological Chemistry.

[145]  S. Appel,et al.  The chemokine MCP-1 and the dendritic and myeloid cells it attracts are increased in the mSOD1 mouse model of ALS , 2006, Molecular and Cellular Neuroscience.

[146]  T. Grune,et al.  Proteasomal defense of oxidative protein modifications. , 2006, Antioxidants & redox signaling.

[147]  J. Julien,et al.  Activation of the p38MAPK cascade is associated with upregulation of TNF alpha receptors in the spinal motor neurons of mouse models of familial ALS , 2006, Molecular and Cellular Neuroscience.

[148]  Jing Zhao,et al.  Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents , 2006, Neuroscience Letters.

[149]  J. Elliott,et al.  Non-neuronal induction of immunoproteasome subunits in an ALS model: Possible mediation by cytokines , 2005, Experimental Neurology.

[150]  Yukio Fujita,et al.  Golgi apparatus of the motor neurons in patients with amyotrophic lateral sclerosis and in mice models of amyotrophic lateral sclerosis , 2005, Neuropathology : official journal of the Japanese Society of Neuropathology.

[151]  E. Buratti,et al.  Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene , 2005, Nucleic acids research.

[152]  M. Masucci,et al.  Endoplasmic reticulum stress compromises the ubiquitin-proteasome system. , 2005, Human molecular genetics.

[153]  D. Butterfield,et al.  Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis. , 2005, Free radical biology & medicine.

[154]  M. Strong,et al.  The Pathobiology of Amyotrophic Lateral Sclerosis: A Proteinopathy? , 2005, Journal of neuropathology and experimental neurology.

[155]  J. Valentine,et al.  Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. , 2005, Annual review of biochemistry.

[156]  M. Salmona,et al.  Protein Nitration in a Mouse Model of Familial Amyotrophic Lateral Sclerosis , 2005, Journal of Biological Chemistry.

[157]  P. Cascio,et al.  Accumulation of human SOD1 and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasome , 2005, Neurobiology of Disease.

[158]  Keiji Tanaka,et al.  Co-chaperone CHIP Associates with Expanded Polyglutamine Protein and Promotes Their Degradation by Proteasomes* , 2005, Journal of Biological Chemistry.

[159]  Ralph A. Nixon,et al.  Extensive Involvement of Autophagy in Alzheimer Disease: An Immuno-Electron Microscopy Study , 2005, Journal of neuropathology and experimental neurology.

[160]  David H Russell,et al.  A Universal Strategy for Proteomic Studies of SUMO and Other Ubiquitin-like Modifiers*S , 2005, Molecular & Cellular Proteomics.

[161]  J. Yewdell,et al.  Understanding presentation of viral antigens to CD8+ T cells in vivo: the key to rational vaccine design. , 2005, Annual review of immunology.

[162]  C. Hill,et al.  Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. , 2005, Trends in cell biology.

[163]  B. Ulfhake,et al.  MHC Class I, β2 microglobulin, and the INF‐γ receptor are upregulated in aged motoneurons , 2004 .

[164]  Tohru Natsume,et al.  Physical and Functional Interaction between Dorfin and Valosin-containing Protein That Are Colocalized in Ubiquitylated Inclusions in Neurodegenerative Disorders* , 2004, Journal of Biological Chemistry.

[165]  A. Amerik,et al.  Mechanism and function of deubiquitinating enzymes. , 2004, Biochimica et biophysica acta.

[166]  T. Gillingwater,et al.  A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. , 2004, American journal of human genetics.

[167]  R. Agami,et al.  AAA ATPase p97/Valosin-containing Protein Interacts with gp78, a Ubiquitin Ligase for Endoplasmic Reticulum-associated Degradation* , 2004, Journal of Biological Chemistry.

[168]  John R Yates,et al.  Global Analysis of Protein Sumoylation in Saccharomyces cerevisiae* , 2004, Journal of Biological Chemistry.

[169]  Sung Goo Park,et al.  Co-chaperone CHIP associates with mutant Cu/Zn-superoxide dismutase proteins linked to familial amyotrophic lateral sclerosis and promotes their degradation by proteasomes. , 2004, Biochemical and biophysical research communications.

[170]  C. Bendotti,et al.  Lessons from models of SOD1-linked familial ALS. , 2004, Trends in molecular medicine.

[171]  K. Nakayama,et al.  CHIP promotes proteasomal degradation of familial ALS‐linked mutant SOD1 by ubiquitinating Hsp/Hsc70 , 2004, Journal of neurochemistry.

[172]  G. Scott,et al.  UCH‐L1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson's disease , 2004, Journal of neurochemistry.

[173]  Carla J. Shatz,et al.  Immune signalling in neural development, synaptic plasticity and disease , 2004, Nature Reviews Neuroscience.

[174]  C. Ross,et al.  Protein aggregation and neurodegenerative disease , 2004, Nature Medicine.

[175]  E. Buratti,et al.  Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance. , 2004, American journal of human genetics.

[176]  T. Uehara,et al.  Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin‐associated and ubiquitin‐like domains , 2004, FEBS letters.

[177]  I. Nishimoto,et al.  Alsin, the Product of ALS2 Gene, Suppresses SOD1 Mutant Neurotoxicity through RhoGEF Domain by Interacting with SOD1 Mutants* , 2004, Journal of Biological Chemistry.

[178]  P. Pandolfi,et al.  SUMO Modification of Huntingtin and Huntington's Disease Pathology , 2004, Science.

[179]  Y. Itoyama,et al.  NEDL1, a Novel Ubiquitin-protein Isopeptide Ligase for Dishevelled-1, Targets Mutant Superoxide Dismutase-1* , 2004, Journal of Biological Chemistry.

[180]  C. Kunsch,et al.  Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. , 2004, Current pharmaceutical design.

[181]  A. Lieberman SUMO, a ubiquitin-like modifier implicated in neurodegeneration , 2004, Experimental Neurology.

[182]  J. Glass,et al.  Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man , 2004, Experimental Neurology.

[183]  M. Strong,et al.  Activated p38MAPK Is a Novel Component of the Intracellular Inclusions Found in Human Amyotrophic Lateral Sclerosis and Mutant SOD1 Transgenic Mice , 2004, Journal of neuropathology and experimental neurology.

[184]  T. Siddique,et al.  Presence of dendritic cells, MCP‐1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue , 2004, Annals of neurology.

[185]  P. Andersen,et al.  Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. , 2004, Brain : a journal of neurology.

[186]  Isidro Ferrer,et al.  Neuronal Induction of the Immunoproteasome in Huntington's Disease , 2003, The Journal of Neuroscience.

[187]  M. Kwak,et al.  Antioxidants Enhance Mammalian Proteasome Expression through the Keap1-Nrf2 Signaling Pathway , 2003, Molecular and Cellular Biology.

[188]  Aaron Ciechanover,et al.  The Ubiquitin Proteasome System in Neurodegenerative Diseases Sometimes the Chicken, Sometimes the Egg , 2003, Neuron.

[189]  G. Sobue,et al.  Dorfin localizes to the ubiquitylated inclusions in Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and amyotrophic lateral sclerosis. , 2003, The American journal of pathology.

[190]  Jeremy N. Skepper,et al.  α-Synuclein Is Degraded by Both Autophagy and the Proteasome* , 2003, Journal of Biological Chemistry.

[191]  J. Valentine,et al.  Misfolded CuZnSOD and amyotrophic lateral sclerosis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[192]  F. Menzies,et al.  Analysis of the Cytosolic Proteome in a Cell Culture Model of Familial Amyotrophic Lateral Sclerosis Reveals Alterations to the Proteasome, Antioxidant Defenses, and Nitric Oxide Synthetic Pathways* , 2003, The Journal of Biological Chemistry.

[193]  H. Yasuda,et al.  SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death , 2002, Neuroreport.

[194]  R. Takahashi,et al.  Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis , 2002, Journal of neurochemistry.

[195]  G. Sobue,et al.  Differentially expressed genes in sporadic amyotrophic lateral sclerosis spinal cords – screening by molecular indexing and subsequent cDNA microarray analysis , 2002, FEBS letters.

[196]  A. Goldberg,et al.  The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. , 2002, Molecular immunology.

[197]  Naoyuki Taniguchi,et al.  Dorfin Ubiquitylates Mutant SOD1 and Prevents Mutant SOD1-mediated Neurotoxicity* , 2002, The Journal of Biological Chemistry.

[198]  T. Yao,et al.  A cryptic protease couples deubiquitination and degradation by the proteasome , 2002, Nature.

[199]  A. Goldberg,et al.  Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes , 2002, The EMBO journal.

[200]  Rainer Duden,et al.  Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. , 2002, Human molecular genetics.

[201]  A. Ciechanover,et al.  The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. , 2002, Physiological reviews.

[202]  J. Hauw,et al.  The relationship between Bunina bodies, skein-like inclusions and neuronal loss in amyotrophic lateral sclerosis , 2002, Acta Neuropathologica.

[203]  D. Price,et al.  Histological Evidence of Protein Aggregation in Mutant SOD1 Transgenic Mice and in Amyotrophic Lateral Sclerosis Neural Tissues , 2001, Neurobiology of Disease.

[204]  M. Ferrone,et al.  The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[205]  L. Barbeito,et al.  Superoxide dismutase and the death of motoneurons in ALS , 2001, Trends in Neurosciences.

[206]  V. Silani,et al.  Early vacuolization and mitochondrial damage in motor neurons of FALS mice are not associated with apoptosis or with changes in cytochrome oxidase histochemical reactivity , 2001, Journal of the Neurological Sciences.

[207]  S. Appel,et al.  Immune reactivity in a mouse model of familial ALS correlates with disease progression , 2001, Neurology.

[208]  Francisco E. Baralle,et al.  Characterization and Functional Implications of the RNA Binding Properties of Nuclear Factor TDP-43, a Novel Splicing Regulator ofCFTR Exon 9* , 2001, The Journal of Biological Chemistry.

[209]  Chou-Chi H. Li,et al.  Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin–proteasome degradation , 2001, Nature Cell Biology.

[210]  C. Pickart,et al.  Mechanisms underlying ubiquitination. , 2001, Annual review of biochemistry.

[211]  R. Kopito,et al.  Aggresomes, inclusion bodies and protein aggregation. , 2000, Trends in cell biology.

[212]  M. Gurney,et al.  Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[213]  A. Ciechanover,et al.  Degradation of the Epstein-Barr Virus Latent Membrane Protein 1 (LMP1) by the Ubiquitin-Proteasome Pathway , 2000, The Journal of Biological Chemistry.

[214]  P. Connell,et al.  The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins , 2000, Nature Cell Biology.

[215]  D. Cyr,et al.  The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation , 2000, Nature Cell Biology.

[216]  T. Olsson,et al.  Expression of MHC class I heavy chain and β2-microglobulin in rat brainstem motoneurons and nigral dopaminergic neurons , 1999, Journal of Neuroimmunology.

[217]  P. Connell,et al.  Identification of CHIP, a Novel Tetratricopeptide Repeat-Containing Protein That Interacts with Heat Shock Proteins and Negatively Regulates Chaperone Functions , 1999, Molecular and Cellular Biology.

[218]  P. Kloetzel,et al.  A theoretical approach towards the identification of cleavage-determining amino acid motifs of the 20 S proteasome. , 1999, Journal of molecular biology.

[219]  R. Hay,et al.  SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. , 1998, Molecular cell.

[220]  J. Kong,et al.  Massive Mitochondrial Degeneration in Motor Neurons Triggers the Onset of Amyotrophic Lateral Sclerosis in Mice Expressing a Mutant SOD1 , 1998, The Journal of Neuroscience.

[221]  S. Cullheim,et al.  Expression of MHC Class I and β2-Microglobulin in Rat Spinal Motoneurons: Regulatory Influences by IFN-Gamma and Axotomy , 1998, Experimental Neurology.

[222]  Z. Mourelatos,et al.  The fragmented neuronal Golgi apparatus in amyotrophic lateral sclerosis includes the trans-Golgi-network: functional implications , 1998, Acta Neuropathologica.

[223]  Y. Agid,et al.  Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. , 1997, Histology and histopathology.

[224]  E. K. Hoffman,et al.  Proteasome inhibition enhances the stability of mouse Cu Zn superoxide dismutase with mutations linked to familial amyotrophic lateral sclerosis , 1996, Journal of the Neurological Sciences.

[225]  A. Haas,et al.  A ubiquitin mutant with specific defects in DNA repair and multiubiquitination , 1995, Molecular and cellular biology.

[226]  Aaron Ciechanover,et al.  The ubiquitin-proteasome proteolytic pathway , 1994, Cell.

[227]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[228]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[229]  C. Larsen,et al.  Comparisons of neuronal (PGP 9.5) and non-neuronal ubiquitin C-terminal hydrolases. , 1992, Biochemical Society transactions.

[230]  P. Mcgeer,et al.  Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. , 1992, The American journal of pathology.

[231]  M. Swash,et al.  Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. , 1991, Brain : a journal of neurology.

[232]  D. Troost,et al.  Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis , 1990, Neuropathology and applied neurobiology.

[233]  P. Kushner,et al.  Major histocompatibility complex antigen expression in the affected tissues in amyotrophic lateral sclerosis , 1990, Annals of neurology.

[234]  Pierluigi Gambetti,et al.  Ubiquitinated filamentous inclusions in spinal cord of patients with motor neuron disease , 1990, Neuroscience Letters.

[235]  J. Lowe,et al.  Ubiquitin carboxyl‐terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases , 1990, The Journal of pathology.

[236]  D. Troost,et al.  Lymphocytic infiltration in the spinal cord of patients with amyotrophic lateral sclerosis. , 1989, Clinical neuropathology.