暂无分享,去创建一个
[1] S. Walker,et al. Wasserstein upper bounds of the total variation for smooth densities , 2020 .
[2] T. G. Coleman,et al. Numerical Integration , 2019, Numerical Methods for Engineering An introduction using MATLAB® and computational electromagnetics examples.
[3] J. Lang,et al. POD-Galerkin Modeling and Sparse-Grid Collocation for a Natural Convection Problem with Stochastic Boundary Conditions , 2014 .
[4] 高等学校計算数学学報編輯委員会編. 高等学校計算数学学報 = Numerical mathematics , 1979 .
[5] P. Revesz. Interpolation and Approximation , 2010 .
[6] A. Ditkowski,et al. Loss of phase and universality of stochastic interactions between laser beams. , 2017, Optics express.
[7] V. Bogachev,et al. Triangular transformations of measures , 2005 .
[8] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[9] Henry P. Wynn,et al. Approximation of probability density functions for SPDEs using truncated series expansions. , 2018, 1810.01028.
[10] Dustin Tran,et al. Hierarchical Implicit Models and Likelihood-Free Variational Inference , 2017, NIPS.
[11] Houman Owhadi,et al. Handbook of Uncertainty Quantification , 2017 .
[12] Gadi Fibich,et al. Density Estimation in Uncertainty Propagation Problems Using a Surrogate Model , 2018, SIAM/ASA J. Uncertain. Quantification.
[13] Haiyong Wang,et al. How fast does the best polynomial approximation converge than Legendre projection? , 2020, ArXiv.
[14] Eric Nalisnick,et al. Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..
[15] Tim Wildey,et al. Convergence of Probability Densities Using Approximate Models for Forward and Inverse Problems in Uncertainty Quantification , 2018, SIAM J. Sci. Comput..
[16] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[17] Simon Tavener,et al. Nonparametric Density Estimation for Randomly Perturbed Elliptic Problems I: Computational Methods, A Posteriori Analysis, and Adaptive Error Control , 2009, SIAM J. Sci. Comput..
[18] Roger G. Ghanem,et al. Basis adaptation in homogeneous chaos spaces , 2014, J. Comput. Phys..
[19] G. Burton. Sobolev Spaces , 2013 .
[20] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[21] A. Quarteroni,et al. Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .
[22] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[23] Jan S. Hesthaven,et al. Spectral Methods for Time-Dependent Problems: Fourier spectral methods , 2007 .
[24] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[25] Amir Sagiv,et al. The Wasserstein distances between pushed-forward measures with applications to uncertainty quantification , 2019, Communications in Mathematical Sciences.
[26] F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .
[27] HAIYONG WANG,et al. On the convergence rates of Legendre approximation , 2011, Math. Comput..
[28] R. Tempone,et al. Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison , 2011 .
[29] Stergios B. Fotopoulos,et al. All of Nonparametric Statistics , 2007, Technometrics.
[30] Jan S. Hesthaven,et al. Uncertainty analysis for the steady-state flows in a dual throat nozzle , 2005 .
[31] E. Tabak,et al. DENSITY ESTIMATION BY DUAL ASCENT OF THE LOG-LIKELIHOOD ∗ , 2010 .
[32] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[33] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[34] Rami Katz,et al. On Spectral Approximations with Nonstandard Weight Functions and Their Implementations to Generalized Chaos Expansions , 2019, J. Sci. Comput..
[35] S. S. Vallender. Calculation of the Wasserstein Distance Between Probability Distributions on the Line , 1974 .
[36] Baskar Ganapathysubramanian,et al. Sparse grid collocation schemes for stochastic natural convection problems , 2007, J. Comput. Phys..
[37] Filippo Santambrogio,et al. Optimal Transport for Applied Mathematicians , 2015 .
[38] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[39] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[40] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[41] Michael Griebel,et al. Optimized general sparse grid approximation spaces for operator equations , 2009, Math. Comput..
[42] Houman Owhadi,et al. On the Brittleness of Bayesian Inference , 2013, SIAM Rev..
[43] Fabio Nobile,et al. Uncertainty Quantification of geochemical and mechanical compaction in layered sedimentary basins , 2017, 1703.03845.
[44] Youssef Marzouk,et al. Sparse approximation of triangular transports on bounded domains , 2020, ArXiv.
[45] M. Ablowitz,et al. Interacting nonlinear wave envelopes and rogue wave formation in deep water , 2014, 1407.5077.
[46] Larry Wasserman,et al. All of Statistics: A Concise Course in Statistical Inference , 2004 .
[47] A. Gaeta,et al. Loss of polarization of elliptically polarized collapsing beams , 2019, Physical Review A.
[48] Shakir Mohamed,et al. Variational Inference with Normalizing Flows , 2015, ICML.
[49] C. Villani. Topics in Optimal Transportation , 2003 .
[50] O. L. Maître,et al. Asynchronous Time Integration for Polynomial Chaos Expansion of Uncertain Periodic Dynamics , 2010 .
[51] A. O'Hagan,et al. Polynomial Chaos : A Tutorial and Critique from a Statistician ’ s Perspective , 2013 .
[52] Michael S. Eldred,et al. Sparse Pseudospectral Approximation Method , 2011, 1109.2936.
[53] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[54] T. N. Sriram. Asymptotics in Statistics–Some Basic Concepts , 2002 .
[55] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[56] G. Stefanou. The stochastic finite element method: Past, present and future , 2009 .
[57] Chiara Piazzola,et al. Uncertainty Quantification of Ship Resistance via Multi-Index Stochastic Collocation and Radial Basis Function Surrogates: A Comparison , 2020, AIAA AVIATION 2020 FORUM.