A Highly Reactive Geminal P/B Frustrated Lewis Pair: Expanding the Scope to C−X (X=Cl, Br) Bond Activation

Abstract The geminal frustrated Lewis pair tBu2PCH2B(Fxyl)2 (1; Fxyl=3,5‐(CF3)2C6H3) is accessible in 65 % yield from tBu2PCH2Li and (Fxyl)2BF. According to NMR spectroscopy and X‐ray crystallography, 1 is monomeric both in solution and in the solid state. The intramolecular P⋅⋅⋅B distance of 2.900(5) Å and the full planarity of the borane site exclude any significant P/B interaction. Compound 1 readily activates a broad variety of substrates including H2, EtMe2SiH, CO2/CS2, Ph2CO, and H3CCN. Terminal alkynes react with heterolysis of the C−H bond. Haloboranes give cyclic adducts with strong P−BX3 and weak R3B−X bonds. Unprecedented transformations leading to zwitterionic XP/BCX3 adducts occur on treatment of 1 with CCl4 or CBr4 in Et2O. In less polar solvents (C6H6, n‐pentane), XP/BCX3 adduct formation is accompanied by the generation of significant amounts of XP/BX adducts. FLP 1 catalyzes the hydrogenation of PhCH=NtBu and the hydrosilylation of Ph2CO with EtMe2SiH.

[1]  G. Erker,et al.  Frustrated Lewis pair chemistry: development and perspectives. , 2015, Angewandte Chemie.

[2]  G. Erker,et al.  Chemie frustrierter Lewis‐Paare: Entwicklung und Perspektiven , 2015 .

[3]  D. Bourissou,et al.  A Stable but Highly Reactive Phosphine-Coordinated Borenium: Metal-free Dihydrogen Activation and Alkyne 1,2-Carboboration. , 2015, Angewandte Chemie.

[4]  M. Oestreich,et al.  A unified survey of Si-H and H-H bond activation catalysed by electron-deficient boranes. , 2015, Chemical Society reviews.

[5]  M. Ingleson,et al.  Regioselective electrophilic borylation of haloarenes. , 2015, Chemical communications.

[6]  W. Uhl,et al.  Surprising Stability of an Al/P‐Based Frustrated Lewis‐Pair Towards Protolysis: HX Adducts (X = F, Cl) with Intramolecular H···X Hydrogen Bonds , 2015 .

[7]  D. Stephan Frustrated Lewis Pairs. , 2015, Journal of the American Chemical Society.

[8]  Xiangqing Feng,et al.  Metal-Free Asymmetric Hydrogenation and Hydrosilylation Catalyzed by Frustrated Lewis Pairs , 2014 .

[9]  Robert M. Edkins,et al.  Optical and electronic properties of air-stable organoboron compounds with strongly electron-accepting bis(fluoromesityl)boryl groups , 2014, Chemical science.

[10]  E. Würthwein,et al.  An Al/P-based frustrated Lewis pair as an efficient ambiphilic ligand: coordination of boron trihalides, rearrangement, and formation of HBX₂ complexes (X = Br, I). , 2014, Inorganic chemistry.

[11]  M. Wagner,et al.  Facile Synthesis of (3,5-(CF3)2C6H3)2BX (X = H, OMe, F, Cl, Br): Reagents for the Introduction of a Strong Boryl Acceptor Unit , 2014 .

[12]  M. Wagner,et al.  Synthesis and Reactivity of o-Phosphane Oxide Substituted Aryl(hydro)borates and Aryl(hydro)boranes , 2014 .

[13]  G. Erker,et al.  Frustrated Lewis pair chemistry of carbon, nitrogen and sulfur oxides , 2014 .

[14]  G. Erker,et al.  Internal adduct formation of active intramolecular C4-bridged frustrated phosphane/borane Lewis pairs. , 2014, Journal of the American Chemical Society.

[15]  M. Oestreich,et al.  Experimental analysis of the catalytic cycle of the borane-promoted imine reduction with hydrosilanes: spectroscopic detection of unexpected intermediates and a refined mechanism. , 2013, Journal of the American Chemical Society.

[16]  G. Erker,et al.  Reaction of Unsaturated Vicinal Phosphane/Borane Frustrated Lewis Pairs with Benzaldehyde , 2013 .

[17]  M. Wagner,et al.  Reactivity of Phosphaboradibenzofulvene toward Hydrogen, Acetonitrile, Benzophenone, and 2,3-Dimethylbutadiene , 2013 .

[18]  K. Lammertsma,et al.  Reactivity of dimeric P/Al-based Lewis pairs toward carbon dioxide and tert-butyl isocyanate , 2013 .

[19]  R. Fröhlich,et al.  Noninteracting, vicinal frustrated P/B-Lewis pair at the norbornane framework: synthesis, characterization, and reactions. , 2013, Journal of the American Chemical Society.

[20]  W. Uhl,et al.  Die Reaktionen eines P/Al‐basierten frustrierten Lewis‐Paars mit Ammoniak, Boran und Aminboranen: Adduktbildung und katalytische Wasserstoffeliminierung , 2013 .

[21]  K. Lammertsma,et al.  Reaction of a P/Al-based frustrated Lewis pair with ammonia, borane, and amine-boranes: adduct formation and catalytic dehydrogenation. , 2013, Angewandte Chemie.

[22]  J. Lawson,et al.  Mechanistic studies into amine-mediated electrophilic arene borylation and its application in MIDA boronate synthesis. , 2013, Journal of the American Chemical Society.

[23]  K. Lammertsma,et al.  Dimeric aluminum-phosphorus compounds as masked frustrated Lewis pairs for small molecule activation. , 2012, Dalton transactions.

[24]  A. Thom,et al.  Novel H2 activation by a tris[3,5-bis(trifluoromethyl)phenyl]borane frustrated Lewis pair. , 2012, Dalton transactions.

[25]  K. Lammertsma,et al.  A phosphorus/aluminum-based frustrated Lewis pair as an ion pair receptor: alkali metal hydride adducts and phase-transfer catalysis. , 2012, Angewandte Chemie.

[26]  M. Ingleson A Perspective on Direct Electrophilic Arene Borylation , 2012 .

[27]  J. Klankermayer,et al.  Enantioselective hydrosilylation with chiral frustrated Lewis pairs. , 2012, Chemistry.

[28]  K. Lammertsma,et al.  Preorganized frustrated Lewis pairs. , 2012, Journal of the American Chemical Society.

[29]  A. Prokofjevs,et al.  N-Directed aliphatic C-H borylation using borenium cation equivalents. , 2011, Journal of the American Chemical Society.

[30]  M. Ingleson,et al.  Simple inexpensive boron electrophiles for direct arene borylation. , 2011, Chemical communications.

[31]  R. Fröhlich,et al.  Electronic Control of Frustrated Lewis Pair Behavior: Chemistry of a Geminal Alkylidene-Bridged Per-pentafluorophenylated P/B Pair , 2011 .

[32]  K. Lammertsma,et al.  Geminal phosphorus/aluminum-based frustrated lewis pairs: C−H versus C≡C activation and CO2 fixation. , 2011, Angewandte Chemie.

[33]  R. Fröhlich,et al.  Chemistry of a geminal frustrated Lewis pair featuring electron withdrawing C6F5 substituents at both phosphorus and boron. , 2011, Chemical communications.

[34]  J. Kampf,et al.  A boronium ion with exceptional electrophilicity. , 2011, Angewandte Chemie.

[35]  D. Stephan,et al.  Deprotonation and Addition Reactions of Frustrated Lewis Pairs with Alkynes , 2010 .

[36]  M. Wagner,et al.  Rigid, Fluoroarene-Containing Phosphonium Borates and Boranes: Syntheses and Reactivity Studies , 2010 .

[37]  D. Stephan,et al.  C-C coupling by thermolysis of alkynyl phosphonium borates. , 2010, Chemistry.

[38]  R. Fröhlich,et al.  Addition reactions to the intramolecular mesityl2P-CH2-CH2-B(C6F5)2 frustrated Lewis pair. , 2010, Dalton transactions.

[39]  R. Fröhlich,et al.  Cyclische Allene und Cumulene durch kooperative Addition frustrierter Lewis‐Paare an konjugierte Enine und Diine , 2010 .

[40]  R. Fröhlich,et al.  Formation of cyclic allenes and cumulenes by cooperative addition of frustrated Lewis pairs to conjugated enynes and diynes. , 2010, Angewandte Chemie.

[41]  M. Ingleson,et al.  Chelate Restrained Boron Cations for Intermolecular Electrophilic Arene Borylation , 2010 .

[42]  G. Erker,et al.  Frustrierte Lewis‐Paare: metallfreie Wasserstoffaktivierung und mehr , 2010 .

[43]  Douglas W Stephan,et al.  Frustrated Lewis pairs: metal-free hydrogen activation and more. , 2010, Angewandte Chemie.

[44]  R. Fröhlich,et al.  Reversible, nicht metallunterstützte Bindung von Kohlendioxid durch frustrierte Lewis‐Paare , 2009 .

[45]  R. Fröhlich,et al.  Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. , 2009, Angewandte Chemie.

[46]  D. Stephan,et al.  Complexation of nitrous oxide by frustrated Lewis pairs. , 2009, Journal of the American Chemical Society.

[47]  D. Stephan Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. , 2009, Dalton transactions.

[48]  R. Fröhlich,et al.  Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. , 2008, Angewandte Chemie.

[49]  R. Fröhlich,et al.  Metallfreie katalytische Hydrierung von Enaminen, Iminen und konjugierten Phosphinoalkenylboranen , 2008 .

[50]  S. Geier,et al.  Activation of H2 by phosphinoboranes R2PB(C6F5)2. , 2008, Journal of the American Chemical Society.

[51]  D. Stephan,et al.  B-H activation by frustrated Lewis pairs: borenium or boryl phosphonium cation? , 2008, Chemical communications.

[52]  R. Fröhlich,et al.  Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane-borane adduct. , 2007, Chemical communications.

[53]  E. Vedejs,et al.  Electrophilic Activation of Lewis Base Complexes of Borane with Trityl Tetrakis(pentafluorophenyl)borate. , 2007, Organometallics.

[54]  F. Rominger,et al.  Sterically crowded diphosphinomethane ligands: molecular structures, UV-photoelectron spectroscopy and a convenient general synthesis of tBu2PCH2PtBu2 and related species , 2003 .

[55]  Piers,et al.  Studies on the mechanism of B(C(6)F(5))(3)-catalyzed hydrosilation of carbonyl functions , 2000, The Journal of organic chemistry.

[56]  W. Piers,et al.  Tris(pentafluorophenyl)boron-Catalyzed Hydrosilation of Aromatic Aldehydes, Ketones, and Esters , 1996 .

[57]  K. Polborn,et al.  Beiträge zur Chemie des Bors, 219. (Di-tert-butylphosphanylimino)(2,2,6,6-tetramethylpiperidino)boran: ein BNP-1,3-”Dipol” , 1993 .

[58]  B. Arbuzov,et al.  Reaction of 1-boryl-2-phosphinoethenes with carbon disulfide , 1990 .

[59]  D. Matteson .alpha.-Halo boronic esters: intermediates for stereodirected synthesis , 1989 .

[60]  D. Matteson,et al.  Homologation of boronic esters to α-chloro boronic esters , 1983 .

[61]  A. Roche,et al.  Organic Chemistry: , 1982, Nature.

[62]  H. Siegel,et al.  Tieftemperatur 13C-NMR.-Spektren von 13C-und 6Li-markierten Chlor-, Brom- und Jod-Lithium-Carbenoiden. Vorläufige Mitteilung , 1980 .

[63]  D. Seebach,et al.  13C-NMR-Spektren von Tribrommethyl- und 1, 1-Dibromethyllithium , 1979 .

[64]  D. Seebach,et al.  13C‐NMR Spectra of Tribromomethyllithium and 1,1‐Dibromoethyllithium , 1979 .

[65]  E. Fluck,et al.  Nuclear Magnetic Resonance Spectroscopy of Boron Compounds , 1978 .

[66]  H. Schmidbaur,et al.  Funktionelle Trimethylphosphinderivate, VI1 Lithium-dimethylphosphinomethanid, (CH3)2PCH2Li, Tetraorganodiphosphinomethane, R2PCH2P(CH3)2 und Tris(dimethylphosphinomethyl)phosphin, P[CH2P(CH3)2]3 Functional Derivatives of Trimethylphosphine, VI1 / Lithium-dimethylphosphinomethanide, (CH3)2PCH2Li, Te , 1977 .

[67]  R. Appel Tertiäres Phosphan/Tetrachlormethan, ein vielseitiges Reagens zur Chlorierung, Dehydratisierung und PN‐Verknüpfung , 1975 .

[68]  R. Appel Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and P ? N Linkage , 1975 .

[69]  H. Hoffmann,et al.  Notiz über die Darstellung von Tri-tert.-butylphosphin , 1967 .

[70]  H. Kohlschütter,et al.  E. Wiberg: Lehrbuch der anorganischen Chemie (begründet von A. F. Holleman), 57.–70. Auflage. Walter de Gruyter & Co., Berlin 1964. 766 Seiten. Preis: DM 32,—. , 1964 .

[71]  D. Matteson,et al.  Neighboring Boron in Nucleophilic Displacement , 1963 .

[72]  K. Ǐssleib,et al.  Betrachtungen zur Addition von Schwefelkohlenstoff an tertiäre aliphatische und hydroaromatische Phosphine , 1954 .

[73]  M. Wagner,et al.  Cyclic Phosphonium Bis(fluoroaryl)boranes – Trends in Lewis Acidities and Application in Diels–Alder Catalysis , 2012 .

[74]  S. Grimme,et al.  Structural importance of secondary interactions in molecules: origin of unconventional conformations of phosphine-borane adducts. , 2008, Chemistry.

[75]  D. Matteson,et al.  Asymmetric synthesis of tertiary alcohols from α-halo boronic esters , 1990 .

[76]  E. Corey,et al.  A synthetic method for formyl→ethynyl conversion (RCHO→RCCH or RCCR′) , 1972 .

[77]  A. S.,et al.  Lehrbuch der Anorganischen Chemie , 1900, Nature.