Heterogeneous mass distribution of the rubble-pile asteroid (101955) Bennu

The asteroid (101955) Bennu has a heterogeneous internal mass distribution with an underdense center and equatorial bulge. The gravity field of a small body provides insight into its internal mass distribution. We used two approaches to measure the gravity field of the rubble-pile asteroid (101955) Bennu: (i) tracking and modeling the spacecraft in orbit about the asteroid and (ii) tracking and modeling pebble-sized particles naturally ejected from Bennu’s surface into sustained orbits. These approaches yield statistically consistent results up to degree and order 3, with the particle-based field being statistically significant up to degree and order 9. Comparisons with a constant-density shape model show that Bennu has a heterogeneous mass distribution. These deviations can be modeled with lower densities at Bennu’s equatorial bulge and center. The lower-density equator is consistent with recent migration and redistribution of material. The lower-density center is consistent with a past period of rapid rotation, either from a previous Yarkovsky-O’Keefe-Radzievskii-Paddack cycle or arising during Bennu’s accretion following the disruption of its parent body.

[1]  Peter H. Smith,et al.  Variations in color and reflectance on the surface of asteroid (101955) Bennu , 2020, Science.

[2]  G. Neumann,et al.  Hemispherical differences in the shape and topography of asteroid (101955) Bennu , 2020, Science Advances.

[3]  D. Reuter,et al.  Asteroid (101955) Bennu’s weak boulders and thermally anomalous equator , 2020, Science Advances.

[4]  D. DellaGiustina,et al.  Global Patterns of Recent Mass Movement on Asteroid (101955) Bennu , 2020, Journal of Geophysical Research: Planets.

[5]  R. A. Jacobson,et al.  Trajectory Estimation for Particles Observed in the Vicinity of (101955) Bennu , 2020, Journal of Geophysical Research: Planets.

[6]  D. Scheeres,et al.  Dynamical Evolution of Simulated Particles Ejected From Asteroid Bennu , 2020, Journal of Geophysical Research: Planets.

[7]  W. Bottke,et al.  Collisional formation of top-shaped asteroids and implications for the origins of Ryugu and Bennu , 2020, Nature Communications.

[8]  K. Kanani,et al.  Uncertainties in the gravity spherical harmonics coefficients arising from a stochastic polyhedral shape , 2020 .

[9]  Rafael A. Alemañ,et al.  Gravitational re-accumulation as the origin of most contact binaries and other small body shapes , 2020 .

[10]  D. Vokrouhlický,et al.  Particle Ejection Contributions to the Rotational Acceleration and Orbit Evolution of Asteroid (101955) Bennu , 2020, Journal of geophysical research. Planets.

[11]  D. N. DellaGiustina,et al.  Episodes of particle ejection from the surface of the active asteroid (101955) Bennu , 2019, Science.

[12]  C. Hartzell Dynamics of 2D electrostatic dust levitation at asteroids , 2019, Icarus.

[13]  Y. Tsuda,et al.  The Western Bulge of 162173 Ryugu Formed as a Result of a Rotationally Driven Deformation Process , 2019, The Astrophysical Journal.

[14]  D R Golish,et al.  The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations , 2019, Nature Communications.

[15]  T. J. McCoy,et al.  Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface , 2019, Nature Geoscience.

[16]  M. C. Nolan,et al.  The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements , 2019, Nature Astronomy.

[17]  R. Jaumann,et al.  The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes , 2019, Science.

[18]  M. K. Crombie,et al.  The Unexpected Surface of Asteroid (101955) Bennu , 2019, Nature.

[19]  M. K. Crombie,et al.  Shape of (101955) Bennu indicative of a rubble pile with internal stiffness , 2019, Nature Geoscience.

[20]  D. Scheeres,et al.  Systematic Structure and Sinks in the YORP Effect , 2019, The Astronomical Journal.

[21]  P. Tricarico,et al.  True polar wander of Ceres due to heterogeneous crustal density , 2018, Nature Geoscience.

[22]  D. Scheeres,et al.  Rotational evolution of self-gravitating aggregates with cores of variable strength , 2018, Planetary and Space Science.

[23]  D. Nesvorný Dynamical Evolution of the Early Solar System , 2018, Annual Review of Astronomy and Astrophysics.

[24]  Davide Farnocchia,et al.  The OSIRIS-REx Radio Science Experiment at Bennu , 2018 .

[25]  K. E. Gordon,et al.  Touch And Go Camera System (TAGCAMS) for the OSIRIS-REx Asteroid Sample Return Mission , 2018 .

[26]  Michelle M. Guevara,et al.  MONTE: the next generation of mission design and navigation software , 2018, CEAS Space Journal.

[27]  C. Russell,et al.  The interior structure of Ceres as revealed by surface topography , 2017 .

[28]  William V. Boynton,et al.  The OSIRIS-REx Laser Altimeter (OLA) Investigation and Instrument , 2017 .

[29]  D. Scheeres,et al.  Equatorial cavities on asteroids, an evidence of fission events , 2017 .

[30]  M. K. Crombie,et al.  OSIRIS-REx: Sample Return from Asteroid (101955) Bennu , 2017, Space Science Reviews.

[31]  A. Marcos,et al.  27th AAS/AIAA Space Flight Mechanics Meeting , 2017 .

[32]  Richard P. Binzel,et al.  The geophysical environment of Bennu , 2016 .

[33]  C. Russell,et al.  A partially differentiated interior for (1) Ceres deduced from its gravity field and shape , 2016, Nature.

[34]  D. Vokrouhlický,et al.  The Yarkovsky and YORP Effects , 2015, 1502.01249.

[35]  Daniel J. Scheeres,et al.  STRESS AND FAILURE ANALYSIS OF RAPIDLY ROTATING ASTEROID (29075) 1950 DA , 2014, 1411.5926.

[36]  D. Scheeres,et al.  A THREE-DIMENSIONAL MODEL OF TANGENTIAL YORP , 2014 .

[37]  D. Scheeres Landslides and Mass shedding on spinning spheroidal asteroids , 2014, 1409.4015.

[38]  David E. Smith,et al.  Constraints on Vesta's Interior Structure Using Gravity and Shape Models from the Dawn Mission , 2014 .

[39]  Daniel J. Scheeres,et al.  Morphology driven density distribution estimation for small bodies , 2014 .

[40]  D. Vokrouhlický,et al.  Orbit and bulk density of the OSIRIS-REx target Asteroid (101955) Bennu , 2014, 1402.5573.

[41]  A. Fitzsimmons,et al.  The internal structure of asteroid (25143) Itokawa as revealed by detection of YORP spin-up , 2014 .

[42]  P. Tricarico Global gravity inversion of bodies with arbitrary shape , 2013, 1307.1669.

[43]  Daniel J. Scheeres,et al.  Orbit Mechanics About Asteroids and Comets , 2012 .

[44]  M. Zuber,et al.  Dawn at Vesta: Testing the Protoplanetary Paradigm , 2012, Science.

[45]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[46]  William M. Owen,et al.  Methods of optical navigation , 2011 .

[47]  V. Shulga,et al.  Gravitational potential of a homogeneous circular torus: a new approach , 2010, 1009.4324.

[48]  A. Youdin,et al.  FORMATION OF KUIPER BELT BINARIES BY GRAVITATIONAL COLLAPSE , 2010, 1007.1465.

[49]  D. Scheeres,et al.  Scaling forces to asteroid surfaces: The role of cohesion , 2010, 1002.2478.

[50]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[51]  R. Park,et al.  Estimating Small-Body Gravity Field from Shape Model and Navigation Data , 2008 .

[52]  D. Scheeres,et al.  Effect of density inhomogeneity on YORP: The case of Itokawa , 2008, 0805.2168.

[53]  Daniel J. Scheeres,et al.  Characterizing and navigating small bodies with imaging data , 2006 .

[54]  J. Kawaguchi,et al.  The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa , 2006, Science.

[55]  Catherine L. Thornton,et al.  Radiometric Tracking Techniques for Deep Space Navigation: Thornton/Radiometric Tracking Techniques , 2005 .

[56]  J. Miller,et al.  A Global Solution for the Gravity Field, Rotation, Landmarks, and Ephemeris of Eros , 2002 .

[57]  Zuber,et al.  The shape of 433 eros from the NEAR-shoemaker laser rangefinder , 2000, Science.

[58]  Li,et al.  NEAR at eros: imaging and spectral results , 2000, Science.

[59]  H. Lass,et al.  The gravitational potential due to uniform disks and rings , 1983 .

[60]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[61]  M. Nolan,et al.  Digital terrain mapping by the OSIRIS-REx mission , 2020 .

[62]  N. Mastrodemos,et al.  Bennu orbit and hazard assessment based on OSIRIS-REx data , 2019 .

[63]  David E. Smith,et al.  The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data , 2018 .

[64]  F. Preusker,et al.  Journal of Geophysical Research: Planets Constraints on Ceres’ Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft , 2017 .

[65]  Daniel J. Scheeres,et al.  Asteroid Interiors and Morphology , 2015 .

[66]  J. Miller,et al.  Determination of Shape, Gravity, and Rotational State of Asteroid 433 Eros , 2002 .

[67]  D. Scheeres,et al.  Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia , 1996 .

[68]  C. H. Acton,et al.  Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .

[69]  New Approach. , 1953, California medicine.

[70]  D. Gagnon,et al.  A R T I C L E , 2022 .