Xe Recovery by DD3R Zeolite Membranes - Application in Anaesthetics.

Xe is only produced by cryogenic distillation of air, and its availability is limited by the extremely low abundance. Therefore, Xe recovery after usage is the only way to guarantee sufficient supply and broad application. Herein we demonstrate DD3R zeolite as a benchmark membrane material for CO2/Xe separation. The CO2 permeance after an optimized membrane synthesis is one order magnitude higher than for conventional membranes and is less susceptible to water vapour. The overall membrane performance is dominated by diffusivity selectivity of CO2 over Xe in DD3R zeolite membranes, whereby rigidity of the zeolite structure plays a key role. For relevant anaesthetic composition (<5% CO2) and condition (humid), CO2 permeance and CO2/Xe selectivity stabilized at 2.0×10-8 mol·m-2·s-1·Pa-1 and 67, respectively, during long-term operation (>320 h). This endows DD3R zeolite membranes great potential for on-stream CO2 removal from the Xe-based closed-circuit anesthesia system. The large cost reduction of up to 4 orders of magnitude by membrane Xe-recycling (>99+%) allows the use of the precious Xe as anaesthetics gas a viable general option in surgery.

[1]  S. Nair,et al.  Scalable One‐Step Gel Conversion Route to High‐Performance CHA Zeolite Hollow Fiber Membranes and Modules for CO 2 Separation , 2019, Energy Technology.

[2]  Qingnan Song,et al.  All-silica DD3R zeolite membrane with hydrophilic-functionalized surface for efficient and highly-stable pervaporation dehydration of acetic acid , 2019, Journal of Membrane Science.

[3]  Shyamapada Nandi,et al.  Hyper-Cross-linked Porous Organic Frameworks with Ultramicropores for Selective Xenon Capture. , 2019, ACS applied materials & interfaces.

[4]  Ting Wu,et al.  SAPO-34 membranes for xenon capture from air , 2019, Journal of Membrane Science.

[5]  E. Drioli,et al.  Discrimination among gas translation, surface and Knudsen diffusion in permeation through zeolite membranes , 2018, Journal of Membrane Science.

[6]  X. Gu,et al.  An ensemble synthesis strategy for fabrication of hollow fiber T-type zeolite membrane modules , 2018, Journal of Membrane Science.

[7]  X. Gu,et al.  Pervaporation dehydration of acetic acid through hollow fiber supported DD3R zeolite membrane , 2018, Separation and Purification Technology.

[8]  F. Kapteijn,et al.  One-Pot Synthesis of High-Flux b-Oriented MFI Zeolite Membranes for Xe Recovery , 2018, ACS applied materials & interfaces.

[9]  Cynthia J. Jameson,et al.  Computational Molecular Modeling of Transport Processes in Nanoporous Membranes , 2018, Processes.

[10]  Highly Selective SSZ-13 Zeolite Hollow Fiber Membranes by Ultraviolet Activation at Near-Ambient Temperature , 2018, ChemNanoMat.

[11]  K. Yogo,et al.  Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation , 2018 .

[12]  Banglin Chen,et al.  A microporous metal–organic framework with commensurate adsorption and highly selective separation of xenon , 2018 .

[13]  Cory M. Simon,et al.  Xenon Gas Separation and Storage Using Metal-Organic Frameworks , 2018 .

[14]  Dong-Yeun Koh,et al.  Ion-Exchanged SAPO-34 Membranes for Krypton-Xenon Separation: Control of Permeation Properties and Fabrication of Hollow Fiber Membranes. , 2018, ACS applied materials & interfaces.

[15]  Diego A. Gómez-Gualdrón,et al.  Molecular Simulation Insights on Xe/Kr Separation in a Set of Nanoporous Crystalline Membranes. , 2018, ACS applied materials & interfaces.

[16]  Ting Wu,et al.  Microporous crystalline membranes for Kr/Xe Separation: Comparison between AlPO-18, SAPO-34, and ZIF-8. , 2018 .

[17]  Xiaoyu Wang,et al.  Molecular dynamics simulations of liquid-liquid phase equilibrium of ternary methanol/water/hydrocarbon mixtures , 2017, Fluid Phase Equilibria.

[18]  H. S. Rho,et al.  Microfluidic devices as gas – Ionic liquid membrane contactors for CO2 removal from anaesthesia gases , 2018 .

[19]  Li Peng,et al.  Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature , 2017 .

[20]  Xuehong Gu,et al.  Understanding the effect of zeolite crystal expansion/contraction on separation performance of NaA zeolite membrane: A combined experimental and molecular simulation study , 2017 .

[21]  A. Oroskar,et al.  The Composition of the Mobile Phase Affects the Dynamic Chiral Recognition of Drug Molecules by the Chiral Stationary Phase. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[22]  D. Banerjee,et al.  Xe adsorption and separation properties of a series of microporous metal–organic frameworks (MOFs) with V-shaped linkers , 2017 .

[23]  M. Haranczyk,et al.  Xenon Recovery at Room Temperature using Metal-Organic Frameworks. , 2017, Chemistry.

[24]  Jeong Hyeon Lee,et al.  An oriented, siliceous deca-dodecasil 3R (DDR) zeolite film for effective carbon capture: insight into its hydrophobic effect , 2017 .

[25]  X. Gu,et al.  Evaluation of hollow fiber T-type zeolite membrane modules for ethanol dehydration , 2017 .

[26]  S. Nair,et al.  Krypton‐xenon separation properties of SAPO‐34 zeolite materials and membranes , 2017 .

[27]  A. Neice,et al.  Xenon anaesthesia for all, or only a select few? , 2016, Anaesthesia.

[28]  Xuhui Feng,et al.  Kr/Xe Separation over a Chabazite Zeolite Membrane. , 2016, Journal of the American Chemical Society.

[29]  Tony Pham,et al.  Hybrid Ultra-Microporous Materials for Selective Xenon Adsorption and Separation. , 2016, Angewandte Chemie.

[30]  D. Farrusseng,et al.  Breakthrough in Xenon Capture and Purification Using Adsorbent-Supported Silver Nanoparticles. , 2016, Chemistry.

[31]  Maciej Haranczyk,et al.  Metal–organic framework with optimally selective xenon adsorption and separation , 2016, Nature Communications.

[32]  Zishu Cao,et al.  DDR-type zeolite membrane synthesis, modification and gas permeation studies , 2016 .

[33]  Kang Li,et al.  Micro-structured alumina multi-channel capillary tubes and monoliths , 2015 .

[34]  D. Sholl,et al.  Efficient Calculation of Gas Diffusivity in Single-Component and Binary Mixtures of Spherical Adsorbates in Flexible 8MR Zeolites , 2015 .

[35]  X. Gu,et al.  Preparation and characterization of α-Al2O3 hollow fiber membranes with four-channel configuration , 2015 .

[36]  A. Cooper,et al.  Separation of rare gases and chiral molecules by selective binding in porous organic cages. , 2014, Nature materials.

[37]  F. Kapteijn,et al.  High flux high-silica SSZ-13 membrane for CO2 separation , 2014 .

[38]  W. Jin,et al.  Multichannel mixed‐conducting hollow fiber membranes for oxygen separation , 2014 .

[39]  Kang Li,et al.  Zeolite NaA membranes supported on alumina hollow fibers: Effect of support resistances on pervaporation performance , 2014 .

[40]  Ludovic F. Dumée,et al.  Seeded growth of ZIF-8 on the surface of carbon nanotubes towards self-supporting gas separation membranes , 2013 .

[41]  D. Sholl,et al.  Efficient and Accurate Methods for Characterizing Effects of Framework Flexibility on Molecular Diffusion in Zeolites: CH4 Diffusion in Eight Member Ring Zeolites , 2013 .

[42]  V. Guliants,et al.  A simulation study of the gas separation properties of decadodecasil 3R zeolite with emphasis on energy-related separations , 2012 .

[43]  F. Kapteijn,et al.  High temperature permeation and separation characteristics of an all-silica DDR zeolite membrane , 2010 .

[44]  P. Wright,et al.  Xenon adsorption in synthetic chabazite zeolites , 2010 .

[45]  J. Dingley,et al.  Closed-Circuit Xenon Delivery Using a Standard Anesthesia Workstation , 2010, Anesthesia and analgesia.

[46]  F. Kapteijn,et al.  Modeling the Loading Dependency of Diffusion in Zeolites: the Relevant Site Model Extended to Mixtures in DDR-Type Zeolite , 2009 .

[47]  D. Sholl,et al.  Carbon dioxide and methane transport in DDR zeolite: insights from molecular simulations into carbon dioxide separations in small pore zeolites. , 2009, Journal of the American Chemical Society.

[48]  F. Kapteijn,et al.  Dehydration performance of a hydrophobic DD3R zeolite membrane , 2008 .

[49]  Y. S. Lin,et al.  Gas permeation through DDR‐type zeolite membranes at high temperatures , 2008 .

[50]  Freek Kapteijn,et al.  Separation and permeation characteristics of a DD3R zeolite membrane , 2008 .

[51]  J. Dingley,et al.  A Cryogenic Machine for Selective Recovery of Xenon from Breathing System Waste Gases , 2007, Anesthesia and analgesia.

[52]  Rajamani Krishna,et al.  Influence of segregated adsorption on mixture diffusion in DDR zeolite , 2007 .

[53]  A. Mendes,et al.  Xenon recycling in an anaesthetic closed-system using carbon molecular sieve membranes , 2007 .

[54]  A. Neimark,et al.  Density functional theory model of adsorption deformation. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[55]  Neil B. McKeown,et al.  Gas separation membranes from polymers of intrinsic microporosity , 2005 .

[56]  J. Falconer,et al.  SAPO-34 membranes for CO2/CH4 separation , 2004 .

[57]  T. Tomita,et al.  Gas separation characteristics of DDR type zeolite membrane , 2004 .

[58]  Y. Nakata,et al.  Will xenon be a stranger or a friend?: the cost, benefit, and future of xenon anesthesia. , 2003, Anesthesiology.

[59]  J. Falconer,et al.  Characterization of SAPO-34 membranes by water adsorption , 2001 .

[60]  B. Smit,et al.  Separation of Alkane Isomers by Exploiting Entropy Effects during Adsorption on Silicalite-1: A Configurational-Bias Monte Carlo Simulation Study , 2001 .

[61]  T. Marx,et al.  Xenon anaesthesia , 2000, Journal of the Royal Society of Medicine.

[62]  F. Kapteijn,et al.  The generalized Maxwell–Stefan model for diffusion in zeolites:: sorbate molecules with different saturation loadings , 2000 .

[63]  J. Kärger,et al.  Diffusion of a Mixture of Methane and Xenon in Silicalite: A Molecular Dynamics Study and Pulsed Field Gradient Nuclear Magnetic Resonance Experiments , 1998 .

[64]  J. C. Jansen,et al.  Synthesis and characterization of the all-silica 8-ring Clathrasil DD3R comparison of adsorption properties with the hydrophilic zeolite A , 1997 .

[65]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[66]  B. Smit,et al.  Mobility of adsorbed species in zeolites: A molecular dynamics simulation of xenon in silicalite. , 1990 .

[67]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[68]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .