Modeling porous shape memory alloys using micromechanical averaging techniques

Abstract A model for the macroscopic mechanical behavior of porous shape memory alloys (SMAs) is presented in this work. The derivation of the model is presented for the general case of a composite with phases undergoing rate-independent inelastic deformations. Micromechanical averaging techniques are used to establish the effective elastic and inelastic behavior based on information about the mechanical response of the individual phases and shape and volume fraction of the inhomogeneities. An explicit expression for the effective tangent stiffness and an evolution equation for the effective inelastic strain are derived. The results for porous SMAs are obtained using a constitutive model with internal variables for dense SMAs and assuming zero stiffness for the inhomogeneities. A detailed study on the choice of the pore shape is also performed for a random distribution of pores. Finally, the numerical results are compared with experimental data for porous NiTi SMA processed from elemental powders with 42% porosity.

[1]  Keh Chih Hwang,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. II: Study of the individual phenomena , 1993 .

[2]  P. Šittner,et al.  Developing hybrid polymer composites with embedded shape-memory alloy wires , 2000 .

[3]  E. Werner,et al.  A new view on transformation induced plasticity (TRIP) , 2000 .

[4]  D. Lagoudas,et al.  Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms , 2000 .

[5]  Christopher A. Martin,et al.  Shape memory alloy TiNi actuators for twist control of smart wing designs , 1996, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[6]  James G. Boyd,et al.  A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material , 1996 .

[7]  Dimitris C. Lagoudas,et al.  Elastoplastic behavior of metal matrix composites based on incremental plasticity and the Mori-Tanaka averaging scheme , 1991 .

[8]  L. Rong,et al.  Transformation behavior of sintered porous NiTi alloys , 1999 .

[9]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect , 1999 .

[10]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[11]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[12]  Dimitris C. Lagoudas,et al.  Development of a shape memory alloy actuated biomimetic vehicle , 2000 .

[13]  Friedrich K. Straub,et al.  Applications of torsional shape memory alloy actuators for active rotor blade control: opportunities and limitations , 1996, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[14]  Natural frequency modification of thermally activated composite plates , 2000 .

[15]  James G. Boyd,et al.  Thermomechanical Response of Shape Memory Composites , 1993, Smart Structures.

[16]  S. Solonin,et al.  Characteristics of hyperelasticity and of shape memory of sintered porous titanium nickelide , 1992 .

[17]  S. Goncharuk,et al.  SHAPE MEMORY AND SUPERELASTICITY BEHAVIOUR OF POROUS Ti-Ni MATERIAL , 1991 .

[18]  The fabrication and thermomechanical behavior of Al and Ti SMA composites , 2000 .

[19]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[20]  G. P. Tandon,et al.  A Theory of Particle-Reinforced Plasticity , 1988 .

[21]  E. Sacco,et al.  A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite , 1997 .

[22]  G. Weng,et al.  A two-level micromechanical theory for a shape-memory alloy reinforced composite , 2000 .

[23]  D. Lagoudas,et al.  Modeling of the thermomechanical behavior of porous shape memory alloys , 2001 .

[24]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[25]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[26]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .

[27]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[28]  G. Dvorak Transformation field analysis of inelastic composite materials , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[29]  Samuel P. Kounaves,et al.  Fabrication and characterization , 1991 .

[30]  K. Thangaraj Fabrication of Porous NiTi Shape Memory Alloy by Elemental Powder Sintering , 2000, Adaptive Structures and Material Systems.

[31]  Bingyun Li,et al.  Porous NiTi alloy prepared from elemental powder sintering , 1998 .

[32]  Ted A. Bateman,et al.  Porous Materials for Bone Engineering , 1997 .

[33]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[34]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II : material characterization and experimental results for a stable transformation cycle , 1999 .

[35]  S. Shabalovskaya,et al.  Mechanical properties and shape memory of porous nitinol , 1994 .

[36]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[37]  Eduard Oberaigner,et al.  TRANSFORMATION INDUCED PLASTICITY REVISED: AN UPDATED FORMULATION , 1998 .

[38]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[39]  Victor Birman,et al.  Review of Mechanics of Shape Memory Alloy Structures , 1997 .

[40]  Minoru Taya,et al.  Strengthening mechanisms of TiNi shape memory fiber/Al matrix composite , 1993, Smart Structures.

[41]  James K. Knowles,et al.  A continuum model of a thermoelastic solid capable of undergoing phase transitions , 1993 .

[42]  D. Lagoudas,et al.  A UNIFIED THERMODYNAMIC CONSTITUTIVE MODEL FOR SMA AND FINITE ELEMENT ANALYSIS OF ACTIVE METAL MATRIX COMPOSITES , 1996 .

[43]  John W. Hutchinson,et al.  Elastic-plastic behaviour of polycrystalline metals and composites , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[44]  Jan Drewes Achenbach,et al.  Effect of interphases on micro and macromechanical behavior of hexagonal-array fiber composites , 1990 .

[45]  Dimitris C. Lagoudas,et al.  Transformation of Embedded Shape Memory Alloy Ribbons , 1998 .

[46]  Bingyun Li,et al.  Microstructure and superelasticity of porous NiTi alloy , 1999 .

[47]  V Brailovski,et al.  Review of shape memory alloys medical applications in Russia. , 1996, Bio-medical materials and engineering.

[48]  George J. Weng,et al.  Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions , 1984 .

[49]  Mohammed Cherkaoui,et al.  Micromechanics modeling of composite with ductile matrix and shape memory alloy reinforcement , 2000 .

[50]  K. Tanaka A THERMOMECHANICAL SKETCH OF SHAPE MEMORY EFFECT: ONE-DIMENSIONAL TENSILE BEHAVIOR , 1986 .

[51]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[52]  Scott R. White,et al.  Theoretical modelling of residual and transformational stresses in SMA composites , 1996 .

[53]  Muhammad A. Qidwai,et al.  Modeling of thermomechanical response of porous shape memory alloys , 2000, Smart Structures.

[54]  James G. Boyd,et al.  Micromechanics of Active Composites With SMA Fibers , 1994 .

[55]  Qingping Sun,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. I: Derivation of general relations , 1993 .

[56]  T. Bateman,et al.  Effect of nitinol implant porosity on cranial bone ingrowth and apposition after 6 weeks. , 1999, Journal of biomedical materials research.

[57]  C. Liang,et al.  A multi-dimensional constitutive model for shape memory alloys , 1992 .