Towards reaction–diffusion computing devices based on minority-carrier transport in semiconductors

Abstract Reaction–diffusion (RD) chemical systems are known to realize sensible computation when both data and results of the computation are encoded in concentration profiles of chemical species; the computation is implemented via spreading and interaction of either diffusive or phase waves. Thin-layer chemical systems are thought of therefore as massively-parallel locally-connected computing devices, where micro-volume of the medium is analogous to an elementary processor. Practical applications of the RD chemical systems are reduced however due to very low speed of traveling waves which makes real-time computation senseless. To overcome the speed-limitations while preserving unique features of RD computers we propose a semiconductor RD computing device where minority carriers diffuse as chemical species and reaction elements are represented by p–n–p–n diodes. We offer blue-prints of the RD semiconductor devices, and study in computer simulation propagation phenomena of the density wave of minority carriers. We then demonstrate what computational problems can be solved in RD semiconductor devices and evaluate space–time complexity of computation in the devices.

[1]  Hans-Georg Purwins,et al.  Travelling current density filaments in multilayered silicon devices , 1994 .

[2]  N. Rambidi,et al.  Neural network devices based on reaction–duffusion media: an approach to artificial retina , 1998 .

[3]  E. D. Weinberger,et al.  Chemical implementation of finite-state machines. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Valery Petrov,et al.  Resonant pattern formation in achemical system , 1997, Nature.

[5]  Kenneth Showalter,et al.  Logic gates in excitable media , 1995 .

[6]  T. Asai 反応拡散系 生き生きとした自然現象を演出する非線形システム 4 反応拡散チップの開発 反応拡散系をシリコンLSIの上に実現する;反応拡散系 生き生きとした自然現象を演出する非線形システム 4 反応拡散チップの開発 反応拡散系をシリコンLSIの上に実現する;Reaction-Diffusion Systems: Nonlinear Dynamics in Nature and Life. Reaction Diffusion Chips. , 2001 .

[7]  A. Hjelmfelt,et al.  Mass-coupled chemical systems with computational properties , 1993 .

[8]  Andrew Adamatzky,et al.  On some limitations of reaction–diffusion chemical computers in relation to Voronoi diagram and its inversion , 2003 .

[9]  H. Engel,et al.  WAVE PROPAGATION IN HETEROGENEOUS EXCITABLE MEDIA , 1998 .

[10]  Eric A. Vittoz,et al.  Micropower Techniques , 1994 .

[11]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[12]  Andrew Adamatzky,et al.  The Formation of Voronoi Diagrams in Chemical and Physical Systems: Experimental Findings and Theoretical Models , 2004, Int. J. Bifurc. Chaos.

[13]  K. Yoshikawa,et al.  Real-time memory on an excitable field. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Tomohiko Yamaguchi,et al.  Finding the optimal path with the aid of chemical wave , 1997 .

[15]  Andrew Adamatzky,et al.  On Multitasking in Parallel Chemical Processors: Experimental Findings , 2003, Int. J. Bifurc. Chaos.

[16]  Andrew Adamatzky,et al.  Experimental logical gates in a reaction-diffusion medium: the XOR gate and beyond. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Andrew Adamatzky Reaction-Diffusion and Excitable Processors: A Sense of the Unconventional , 2000, Scalable Comput. Pract. Exp..

[18]  A Hjelmfelt,et al.  Chemical implementation of neural networks and Turing machines. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Kenneth Showalter,et al.  Signal transmission in chemical systems: propagation of chemical waves through capillary tubes , 1994 .

[20]  R. Blittersdorf,et al.  Chemical Visualization of Boolean Functions: A Simple Chemical Computer , 1995 .

[21]  Kenichi Yoshikawa,et al.  Information operations with multiple pulses on an excitable field , 2003 .

[22]  Andrew Adamatzky,et al.  Experimental Reaction–Diffusion Chemical Processors for Robot Path Planning , 2003, J. Intell. Robotic Syst..

[23]  Stefan Müller,et al.  Spiral wave dynamics under pulsatory modulation of excitability , 1996 .

[24]  Jean-Marc Flesselles,et al.  Dispersion relation for waves in the Belousov–Zhabotinsky reaction , 1998 .

[25]  Arokia Nathan,et al.  Numerical simulation of a p-n-p-n color sensor for simultaneous color detection , 1994 .

[26]  Mitsuru Yoneyama,et al.  Optical modification of wave dynamics in a surface layer of the Mn-catalyzed Belousov-Zhabotinsky reaction , 1996 .

[27]  K. Yoshikawa,et al.  Information operations with an excitable field. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  A Hjelmfelt,et al.  Pattern Recognition in Coupled Chemical Kinetic Systems , 1993, Science.

[29]  Andrew Adamatzky,et al.  Collision-free path planning in the Belousov-Zhabotinsky medium assisted by a cellular automaton , 2002, Naturwissenschaften.

[30]  Valentina Beato,et al.  Pulse propagation in a model for the photosensitive Belousov-Zhabotinsky reaction with external noise , 2003, SPIE International Symposium on Fluctuations and Noise.

[31]  Takahiro Asai A CMOS Reaction-Diffusion Circuit Based on Cellular-Automaton Processing Emulating the Belousov-Zhabotinsky Reaction , 2002 .

[32]  Andrew Adamatzky,et al.  Chemical Processor for Computation of Skeleton of Planar Shape , 1997 .

[33]  Andrew Adamatzky,et al.  Experimental reaction–diffusion pre-processor for shape recognition , 2002 .

[34]  Jichang Wang,et al.  Light-induced pattern formation in the excitable Belousov–Zhabotinsky medium , 2001 .

[35]  J. Schnakenberg,et al.  G. Nicolis und I. Prigogine: Self‐Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations. J. Wiley & Sons, New York, London, Sydney, Toronto 1977. 491 Seiten, Preis: £ 20.–, $ 34.– , 1978 .

[36]  Yuzo Furukawa,et al.  Control of N Content of GaPN Grown by Molecular Beam Epitaxy and Growth of GaPN Lattice Matched to Si(100) Substrate , 2002 .

[37]  K. Showalter,et al.  Navigating Complex Labyrinths: Optimal Paths from Chemical Waves , 1995, Science.

[38]  V. I. Krinsky,et al.  Image processing using light-sensitive chemical waves , 1989, Nature.

[39]  N G Rambidi,et al.  Chemical reaction-diffusion implementation of finding the shortest paths in a labyrinth. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  John Ross,et al.  Implementation of logic functions and computations by chemical kinetics , 1995 .

[41]  H. Schulze,et al.  Periodic and irregular spatio-temporal behaviour of current density filaments in Si p+−n+ −p−n− diodes , 1993 .

[42]  Yannis Tsividis,et al.  Design of Mos Vlsi Circuits for Telecommunications , 1985 .

[43]  Klaus-Peter Zauner,et al.  Molecular approach to informal computing , 2001, Soft Comput..

[44]  I. Prigogine,et al.  Formative Processes. (Book Reviews: Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations) , 1977 .

[45]  Klaus-Peter Zauner,et al.  Molecular Computing with Artificial Neurons , 2000 .

[46]  H. Engel,et al.  Experimental study of the dynamics of spiral pairs in light-sensitive Belousov–Zhabotinskii media using an open-gel reactor , 2000 .

[47]  Andrew Adamatzky Dynamical universal computation in excitable lattices , 1998, MCU.

[48]  Andrew Adamatzky,et al.  Computing in nonlinear media and automata collectives , 2001 .