Quantitative Fluorescence Microscopy

Abstract Quantitative fluorescence microscopy has exploited the principle that the excitation wavelengths of biological molecules is always lower than their emission wavelengths. This has enabled scientists to visualize biological structures and their functions. The addition of immunofluorescence techniques allowed the specificity of antibody-hapten bonds and naturally occurring ligands to be used to generate specific probes. New filter designs made it possible to simultaneously detect multiple tluorophores with even greater specificity. These, however, were only qualitative observations. The latest developments in engineered probes and microscopy methods such as radiomekic imaging, fluorescence resonance energy transfer imaging, and fluorescence lifetime imaging have permitted quantitative measurements. This review examines the latest in quantification techniques and their applications. (The J Histotechnol 23:229, 2000).

[1]  W. Lederer,et al.  Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. , 1993, Science.

[2]  Sim Heng Ong,et al.  Autofocusing for tissue microscopy , 1993, Image Vis. Comput..

[3]  David M. Coleman,et al.  A Two-Dimensional Fluorescence Lifetime Imaging System Using a Gated Image Intensifier , 1991 .

[4]  G. Brakenhoff,et al.  Double‐pulse fluorescence lifetime imaging in confocal microscopy , 1995 .

[5]  J. Ploem,et al.  The use of a vertical illuminator with interchangeable dichroic mirrors for fluorescence microscopy with incidental light. , 1967, Zeitschrift fur wissenschaftliche Mikroskopie und mikroskopische Technik.

[6]  Christopher G. Morgan,et al.  Prospects for confocal imaging based on nanosecond fluorescence decay time , 1992 .

[7]  Stan W. Thomas,et al.  Subnanosecond intensifier gating using heavy and mesh cathode underlays , 1991 .

[8]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[9]  N. Mahajan,et al.  Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis. , 1999, Chemistry & biology.

[10]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[11]  T. French,et al.  Two‐photon fluorescence lifetime imaging microscopy of macrophage‐mediated antigen processing , 1997, Journal of microscopy.

[12]  H. H. Hopkins The frequency response of a defocused optical system , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  Herbert A. Elion,et al.  Electro-Optics Handbook , 1979 .

[14]  T M Jovin,et al.  Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation , 1995, The Journal of cell biology.

[15]  I T Young,et al.  A comparison of different focus functions for use in autofocus algorithms. , 1985, Cytometry.

[16]  Joseph R. Lakowicz,et al.  Fluorescence lifetime-based sensing of pH, Ca2+, K+ and glucose , 1993 .

[17]  Hans-Georg Zimmer,et al.  Focus Adjustments In Linear Systems , 1982, Other Conferences.

[18]  Steffen Lindek,et al.  Confocal theta microscopy and 4Pi-confocal theta microscopy , 1994, Electronic Imaging.

[19]  D. Allen,et al.  Intracellular calibration of the calcium indicator indo-1 in isolated fibers of Xenopus muscle. , 1996, Biophysical journal.

[20]  Stefan W. Hell,et al.  Effect of the specimen refractive index on the imaging of a confocal fluorescence microscope employing high aperture oil immersion lenses , 1995 .

[21]  Joseph Carbone,et al.  Application of low-noise CID imagers in scientific instrumentation cameras , 1991, Medical Imaging.

[22]  R Hard,et al.  Phase-randomized laser illumination for microscopy. , 1977, Journal of cell science.

[23]  A. Waggoner,et al.  Cyanine dye labeling reagents containing isothiocyanate groups. , 1989, Cytometry.

[24]  Eric R. Fossum,et al.  Active pixel sensors: are CCDs dinosaurs? , 1993, Electronic Imaging.

[25]  Y. K. Levine,et al.  Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. , 1995, Analytical biochemistry.

[26]  M. Kozubek,et al.  Efficient real-time confocal microscopy with white light sources , 1996, Nature.

[27]  Hans C. Gerritsen,et al.  Fluorescence lifetime imaging using a confocal laser scanning microscope , 1992 .

[28]  J. Lakowicz,et al.  4‐GHz internal MCP‐photomultiplier cross correlation , 1990 .

[29]  Lucas J. van Vliet,et al.  A fast scanner for fluorescence microscopy using a 2-D CCD and time delayed integration , 1994 .

[30]  Todd Eugene French The development of fluorescence lifetime imaging and an application in immunology , 1996 .

[31]  H. Netten,et al.  Autofocusing in microscopy based on the OTF and sampling , 1994 .

[32]  Ahmed Erteza Sharpness index and its application to focus control. , 1976, Applied optics.

[33]  R. D. Spencer,et al.  MEASUREMENTS OF SUBNANOSECOND FLUORESCENCE LIFETIMES WITH A CROSS‐CORRELATION PHASE FLUOROMETER * , 1969 .

[34]  I T Young,et al.  Image fidelity: characterizing the imaging transfer function. , 1989, Methods in cell biology.

[35]  Joseph R. Lakowicz,et al.  Lifetime‐selective fluorescence imaging using an rf phase‐sensitive camera , 1991 .

[36]  N. Carter Cytogenetic analysis by chromosome painting. , 1994, Cytometry.

[37]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[38]  J A Steinkamp,et al.  Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry. , 1993, Cytometry.

[39]  Stephen Wolfram,et al.  Mathematica ® 3.0 Standard Add-on Packages , 1993 .

[40]  J. F. Brenner,et al.  An automated microscope for cytologic research a preliminary evaluation. , 1976, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[41]  D. Meschede,et al.  A compact tunable 60‐dB Faraday optical isolator for the near infrared , 1992 .

[42]  Jeff Hecht,et al.  Understanding Fiber Optics , 1987 .

[43]  Hiroaki Misawa,et al.  Light emitting diode-based nanosecond ultraviolet light source for fluorescence lifetime measurements , 1995 .

[44]  H.C. Gerritsen,et al.  Combining two-photon excitation with fluorescence lifetime imaging , 1999, IEEE Engineering in Medicine and Biology Magazine.

[45]  W. Bodmer,et al.  High-throughput class I HLA genotyping using fluorescence resonance energy transfer (FRET) probes and sequence-specific primer-polymerase chain reaction (SSP-PCR). , 1999, Tissue antigens.

[46]  A. Urbani,et al.  A continuous assay of hepatitis C virus protease based on resonance energy transfer depsipeptide substrates. , 1996, Analytical biochemistry.

[47]  E. Abbe,et al.  Note on the Proper Definition of the Amplifying Power of a Lens or Lens‐system , 1884 .

[48]  M. Sauer,et al.  Design of Multiplex Dyes , 1993 .

[49]  T. Jovin,et al.  Fast algorithms for the analysis of single and double exponential decay curves with a background term. Application to time‐resolved imaging microscopy , 1997 .

[50]  C. D. dos Remedios,et al.  Fluorescence resonance energy transfer spectroscopy is a reliable "ruler" for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. , 1995, Journal of structural biology.

[51]  William W. Ward,et al.  SPECTRAL PERTURBATIONS OF THE AEQUOREA GREEN‐FLUORESCENT PROTEIN , 1982 .

[52]  H Szmacinski,et al.  Fluorescence lifetime imaging microscopy: homodyne technique using high-speed gated image intensifier. , 1994, Methods in enzymology.

[53]  Hans C. Gerritsen,et al.  Fluorescence lifetime imaging of free calcium in single cells , 1994 .

[54]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[55]  Gordon W. Ellis A fiber-optic phase-randomizer for microscope illumination by laser , 1979 .

[56]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[57]  C. G. Morgan,et al.  A single-photon-counting Fourier transform microfluorometer , 1986 .

[58]  V. Apanasovich,et al.  The method of fluorescence decays simultaneous analysis , 1996 .

[59]  T. W. Ridler,et al.  Picture thresholding using an iterative selection method. , 1978 .

[60]  B. Ulfhake,et al.  Spectra and fluorescence lifetimes of lissamine rhodamine, tetramethylrhodamine isothiocyanate, texas red, and cyanine 3.18 fluorophores: influences of some environmental factors recorded with a confocal laser scanning microscope. , 1995, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[61]  Gary T. Wang,et al.  Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. , 1990, Science.

[62]  Stan W. Thomas,et al.  Picosecond intensifier gating with a plated webbing cathode underlay , 1991 .

[63]  P. Negulescu,et al.  Cell-based assays and instrumentation for screening ion-channel targets. , 1999, Drug discovery today.

[64]  G. Rao,et al.  Sensing oxygen through skin using a red diode laser and fluorescence lifetimes. , 1995, Biosensors & bioelectronics.

[65]  F S Fay,et al.  Intracellular calibration of the fluorescent calcium indicator Fura-2. , 1990, Cell calcium.

[66]  Brian Herman,et al.  Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer , 1998, Nature Biotechnology.

[67]  I. T. Young,et al.  Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. , 1995, Biophysical journal.

[68]  A. Hall Applied Optics. , 2022, Science.

[69]  N. Galjart,et al.  The gene encoding human protective protein (PPGB) is on chromosome 20. , 1991, Genomics.

[70]  Anthony Dandridge,et al.  Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber. , 1980, Applied optics.

[71]  S. Rashleigh,et al.  Beam-to-fiber coupling with low standing wave ratio. , 1980, Applied optics.

[72]  J. Riordan,et al.  Angiotensin-converting enzyme: zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes. , 1991, Biochemistry.

[73]  R A Wick,et al.  Quantum-limited imaging using microchannel plate technology. , 1987, Applied optics.

[74]  R. Tsien,et al.  [14] Measurement of cytosolic free Ca2+ with quin2 , 1989 .

[75]  J. Price,et al.  Comparison of phase-contrast and fluorescence digital autofocus for scanning microscopy. , 1994, Cytometry.

[76]  N. Kristianpoller,et al.  Optical Properties of “Liumogen”: A Phosphor for Wavelength Conversion , 1964 .

[77]  D. K. Green,et al.  Automatic Focusing of a Computer-Controlled Microscope , 1975, IEEE Transactions on Biomedical Engineering.

[78]  S. Terakawa Video Microscopy , 1985, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[79]  Paolo Gualtieri,et al.  Measurement of spatial variation of responsiveness in solid-state imager , 1986, IEEE Transactions on Instrumentation and Measurement.

[80]  H Szmacinski,et al.  Fluorescence lifetime imaging. , 1992, Analytical biochemistry.

[81]  R. Mathies,et al.  Energy transfer primers: A new fluorescence labeling paradigm for DNA sequencing and analysis , 1996, Nature Medicine.

[82]  K Cook,et al.  Comparison of autofocus methods for automated microscopy. , 1991, Cytometry.

[83]  H. Netten,et al.  FISH and chips: automation of fluorescent dot counting in interphase cell nuclei. , 1997, Cytometry.

[84]  R. Lumry,et al.  High Performance Phase Fluorometer Constructed from Commercial Subunits , 1965 .

[85]  J. Mullikin,et al.  Depth-of-Focus in Microscopy , 1993 .

[86]  R. Dobarzić,et al.  [Fluorescence microscopy]. , 1975, Plucne bolesti i tuberkuloza.

[87]  A. Periasamy,et al.  Fluorescence Lifetime Imaging Microscopy (FLIM): Instrumentation and Applications , 1992 .

[88]  H Szmacinski,et al.  Fluorescence lifetime imaging of intracellular calcium in COS cells using Quin-2. , 1994, Cell calcium.

[89]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[90]  H Szmacinski,et al.  Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry. , 1993, Analytical chemistry.

[91]  Journal of the Optical Society of America , 1950, Nature.

[92]  Charles S. Williams,et al.  Introduction To The Optical Transfer Function , 1989 .

[93]  G. J. Brakenhoff,et al.  Confocal scanning light microscopy with high aperture immersion lenses , 1979 .

[94]  H Szmacinski,et al.  Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics. , 1995, Biophysical journal.

[95]  F. R. Boddeke,et al.  Calibration of the automated z‐axis of a microscope using focus functions , 1997 .

[96]  W. Graham Richards,et al.  Art of electronics , 1983, Nature.

[97]  Stefania Residori,et al.  New approach to noise factor measurement of imaging devices , 1994 .

[98]  W. Webb,et al.  Three‐dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two‐photon excitation laser scanning microscopy , 1995, Journal of microscopy.

[99]  Robert M. Clegg,et al.  Fluorescence lifetime imaging microscopy: pixel-by-pixel analysis of phase-modulation data , 1994 .

[100]  I. Young,et al.  Image Detectors for Digital Image Microscopy , 1998 .

[101]  S. Hell,et al.  Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index , 1993 .

[102]  E. Gaviola Ein Fluorometer. Apparat zur Messung von Fluoreszenzabklingungszeiten , 1927 .

[103]  Robert M. Clegg,et al.  Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale , 1993 .

[104]  M. Roederer,et al.  Cy7PE and Cy7APC: bright new probes for immunofluorescence. , 1996, Cytometry.

[105]  T. Baer,et al.  Near-IR dyes in three-color volumetric capillary cytometry: cell analysis with 633- and 785-nm laser excitation. , 1995, Cytometry.

[106]  E. Gratton,et al.  A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. , 1983, Biophysical journal.

[107]  Ian T. Young,et al.  Methods for CCD camera characterization , 1994, Electronic Imaging.

[108]  P. Debye,et al.  On the Scattering of Light by Supersonic Waves. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[109]  T. Holzman,et al.  A continuous fluorescence assay of renin activity. , 1993, Analytical biochemistry.

[110]  A Miyawaki,et al.  Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[111]  寛一 中川原 Automation of Chromosome Analysis , 1998 .

[112]  T. Shows,et al.  Mapping small DNA sequences by fluorescence in situ hybridization directly on banded metaphase chromosomes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[113]  P. Silver,et al.  Mapping interactions between nuclear transport factors in living cells reveals pathways through the nuclear pore complex. , 2000, Molecular cell.