Localization of photosynthetic membrane components in Rhodopseudomonas sphaeroides by a radioactive labeling procedure.

Reduction with [3H]KBH4 of Schiff's bases generated by reaction with pyridoxal 5'-phosphate (which cannot penetrate the intact cytoplasmic membrane) yields tritium-labeled derivatives of both proteins and lipids accessible on the periplasmic side of the cytoplasmic membrane. Application of this technique to phototrophically grown Rhodopseudomonas sphaeroides labeled both the cell envelope and chromatophore fractions. The technique was also applied to R. sphaeroides harvested at various times during an adaptation from heterotrophic to phototrophic growth conditions. The specific activity of the chromatophore fraction after 20 h of adaptation was 76% of that found at the beginning, indicating that the intracytoplasmic membranes and cytoplasmic membrane form a continuous membrane system, with the majority of the intracytoplasmic membranes accessible to the external medium throughout the adaptation. The identity of the proteins labeled by this technique was investigated in two fractions labeled after cell disruption: normal "inside-out" chromatophores and "right-side-out" membrane vesicles isolated by lysozyme--osmotic shock treatment of cells grown in high light intensity (15000 lx). The results after sodium dodecyl sulfate--polyacrylamide gel electrophoresis and fluorography indicated that the 28000-dalton subunit (and to a lesser extent the 21000-dalton subunit) of the reaction center complex and two polypeptides in the light-harvesting region of the gel were heavily labeled in the chromatophores and were thus accessible on the cytoplasmic side of the membrane. At least one of the latter two polypeptides was also labeled in the membrane vesicles and was thus also accessible on the periplasmic side of the membrane. None of the reaction center subunits was significantly labeled in a reaction center complex prepared from the membrane vesicle sample.

[1]  G. Drews,et al.  Nitrogen-limited continuous culture ofRhodopseudomonas capsulata growing photosynthetically or heterotrophically under low oxygen tensions , 2004, Archives of Microbiology.

[2]  N. Chua,et al.  Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[3]  O. Holmqvist Evidence of discontinuity between the cytoplasmic and intracytoplasmic membranes in Rhodopseudomonas sphaeroides A study with ferrous gluconate as a tracer substance in electron microscopy and X-ray microanalysis , 1979 .

[4]  R. Niederman,et al.  Membranes of Rhodopseudomonas sphaeroides: effect of cerulenin on assembly of chromatophore membrane , 1979, Journal of bacteriology.

[5]  J. Takemoto,et al.  Comparison, by freeze-fracture electron microscopy, of chromatophores, spheroplast-derived membrane vesicles, and whole cells of Rhodopseudomonas sphaeroides , 1978, Journal of bacteriology.

[6]  R. L. Hall,et al.  TRANS‐MEMBRANE LOCALIZATION OF REACTION CENTER PROTEINS IN RHODOPSEUDOMONAS SPHAEROIDES CHROMATOPHORES , 1978 .

[7]  R. Niederman,et al.  Membranes of Rhodopseudomonas sphaeroides. V. Identification of bacteriochlorophyll alpha-depleted cytoplasmic membrane in phototrophically grown cells. , 1978, Biochimica et biophysica acta.

[8]  A. Crofts,et al.  Analysis of the pigment content of an antenna pigment-protein complex from three strains of Rhodopseudomonas sphaeroides. , 1978, Biochimica et biophysica acta.

[9]  J. Oelze Proteins exposed at the surface of chromatophores of Rhodospirillum rubrum: the orientation of isolated chromatophores. , 1978, Biochimica et biophysica acta.

[10]  K. Sauer,et al.  Bacteriochlorophyll-protein complexes from the light-harvesting antenna of photosynthetic bacteria. , 1978, Biochemistry.

[11]  H. Zuber,et al.  On the localization of a bacteriochlorophyll‐associated polypeptide in the chromatophore membrane of Rhodospirillum rubrum G‐9 , 1978 .

[12]  Y. Erokhin,et al.  Investigation of light‐harvesting complex Rhodopseudomonas Sphaeroides , 1978 .

[13]  G. Drews,et al.  Isolation and characterization of light harvesting bacteriochlorophyll.protein complexes from Rhodopseudomonas capsulata. , 1978, Biochimica et biophysica acta.

[14]  W. Konings,et al.  Structural and functional properties of chromatophores and membrane vesicles from Rhodepseudomonas sphaeroides , 1978 .

[15]  G. Drews,et al.  The formation of bacteriochlorophyll.protein complexes of the photosynthetic apparatus of Rhodopseudomonas capsulata during early stages of development. , 1978, Biochimica et biophysica acta.

[16]  K. Shimada,et al.  Studies on the surface structure of the intracytoplasmic membrane in the photosynthetic purple bacterium Chromatium vinosum by means of chemical modification. , 1977, Journal of biochemistry.

[17]  K. Hanselmann,et al.  Localisation of the subunits of the photosynthetic reaction centers in the chromatophore membrane of Rhodospirillum rubrum. , 1977, Biochimica et biophysica acta.

[18]  M. Nishimura,et al.  Sidedness of membrane structures in Rhodopseudomonas sphaeroides. Electrochemical titration of the spectrum changes of carotenoid in spheroplasts, spheroplast membrane vesicles and chromatophores. , 1977, Biochimica et biophysica acta.

[19]  J. Takemoto,et al.  Effects of incident light levels on photosynthetic membrane polypeptide composition and assembly in Rhodopseudomonas sphaeroides , 1977, Journal of bacteriology.

[20]  K. Shimada,et al.  Chemical modification by trinitrobenzenesulfonate of a lipid and proteins of intracytoplasmic membranes isolated from Chromatium vinosum and Azotobacter vinelandii. , 1976, Biochimica et biophysica acta.

[21]  R. Niederman,et al.  Membranes of Rhodopseudomonas sphaeroides. IV. Assembly of chromatophores in low-aeration cell suspensions. , 1976, Biochimica et biophysica acta.

[22]  M. Collins,et al.  Membranes of Rhodospirillum rubrum: physicochemical properties of chromatophore fractions isolated from osmotically and mechanically disrupted cells , 1976, Journal of bacteriology.

[23]  V. Braun,et al.  Covalent lipoprotein from the outer membrane of Escherichia coli. , 1975, Biochimica et biophysica acta.

[24]  A. Hochman,et al.  The location and function of cytochrome c2 in Rhodopseudomonas capsulate membranes. , 1975, European journal of biochemistry.

[25]  J. Oelze,et al.  Quantitative Determination of Cytoplasmic Membrane Invaginations in Phototrophically Growing Rhodospirillum rubrum. A Freeze-etch Study , 1975 .

[26]  M. Reporter,et al.  Localization of photosynthetic reaction centers by antibody binding to chromatophore membranes from Rhodopseudomonas spheroides strain R26. , 1975, Biochimica et biophysica acta.

[27]  A. Crofts,et al.  Asymmetry of an energy transducing membrane the location of cytochrome c2 in Rhodopseudomonas spheroides and Rhodopseudomonas capsulata. , 1975, Biochimica et biophysica acta.

[28]  J. Takemoto,et al.  Function of membrane proteins coupled to bacteriochlorophyll synthesis. Studies with wild type and mutant strains of Rhodopseudomonas spheroides. , 1974, Archives of biochemistry and biophysics.

[29]  W. Bonner,et al.  A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. , 1974, European journal of biochemistry.

[30]  F. Reiss-Husson,et al.  Comparative studies on two reaction center preparations from Rhodopseudomonas speheroides Y , 1974, FEBS letters.

[31]  R. L. Hall,et al.  COMPARISON OF PHOTOTRAP COMPLEXES FROM CHROMATOPHORES OF RHODOSPIRILLUM RUBRUM, RHODOPSEUDOMONAS SPHEROIDES, AND THE R‐26 MUTANT OF RHODOPSEUDOMONAS SPHEROIDES* , 1973, Photochemistry and photobiology.

[32]  R. Clayton,et al.  Relations between pigments and proteins in the photosynthetic membranes of Rhodopseudomonas spheroides. , 1972, Biochimica et biophysica acta.

[33]  D. Rifkin,et al.  A specific labeling procedure for proteins on the outer surface of membranes. , 1972, The Journal of biological chemistry.

[34]  D. Raveed,et al.  Some properties of the ATPase from chromatophores of Rhodopseudomonas spheroides and its structural relationship to the bacteriochlorophyll proteins. , 1972, Biochimica et biophysica acta.

[35]  K. Gibson,et al.  Membranes of Rhodopseudomonas spheroides. I. Isolation and characterization of membrane fractions from extracts of aerobically and anaerobically grown cells. , 1972, Archives of biochemistry and biophysics.

[36]  G. A. Peters,et al.  Photosynthetic membrane development inRhodopseudomonas spheroides , 1972 .

[37]  G. Drews,et al.  Membranes of photosynthetic bacteria. , 1972, Biochimica et biophysica acta.

[38]  W. R. Sistrom,et al.  CONTROL OF SYNTHESIS OF REACTION CENTER BACTERIOCHLOROPHYLL IN PHOTOSYNTHETIC BACTERIA , 1972, Photochemistry and photobiology.

[39]  C. Schnaitman Effect of Ethylenediaminetetraacetic Acid, Triton X-100, and Lysozyme on the Morphology and Chemical Composition of Isolated Cell Walls of Escherichia coli , 1971, Journal of bacteriology.

[40]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[41]  G. Drews,et al.  Der Einfluss der lichtintensität und der sauerstoffspannung auf die differenzierung der membranen von Rhodospirillum rubrum , 1970 .

[42]  K. Randerath An evaluation of film detection methods for weak β-emitters, particularly tritium , 1970 .

[43]  K. Weber,et al.  The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. , 1969, The Journal of biological chemistry.

[44]  D. Bownds Site of Attachment of Retinal in Rhodopsin , 1967, Nature.

[45]  J. Lascelles The accumulation of bacteriochlorophyll precursors by mutant and wild-type strains of Rhodopseudomonas spheroides. , 1966, The Biochemical journal.

[46]  K. Gibson Structure of Chromatophores of Rhodopseudomonas spheroides. Removal of a Nonpigmented Outer Layer of Lipid , 1965 .

[47]  G. Cohen-bazire,et al.  THE FINE STRUCTURE OF RHODOSPIRILLUM RUBRUM , 1963, The Journal of cell biology.