Prime Power Graphs for Groups of Lie Type

Abstract We associate a weighted graph Δ( G ) to each finite simple group G of Lie type. We show that, with an explicit list of exceptions, Δ( G ) determines G up to isomorphism, and for these exceptions, Δ( G ) nevertheless determines the characteristic of G . This result was motivated by algorithmic considerations. We prove that for any finite simple group G of Lie type, input as a black-box group with an oracle to compute the orders of group elements, Δ( G ) and the characteristic of G can be computed by a Monte Carlo algorithm in time polynomial in the input length. The characteristic is needed as part of the input in a previous constructive recognition algorithm for G .

[1]  M. Liebeck,et al.  Centralizers of Semisimple Elements in Finite Twisted Groups of Lie Type , 1985 .

[2]  William M. Kantor,et al.  On constructive recognition of a black box PSL , 2001 .

[3]  D. Deriziotis,et al.  The Maximal Tori in The Finite Chevalley Groups of Type E6E7 And E8 , 1991 .

[4]  Charles R. Leedham-Green,et al.  Calculating the order of an invertible matrix , 1995, Groups and Computation.

[5]  Cheryl E. Praeger,et al.  A Recognition Algorithm for Special Linear Groups , 1992 .

[6]  Michael Aschbacher,et al.  On the maximal subgroups of the finite classical groups , 1984 .

[7]  William M. Kantor,et al.  Black Box Classical Groups , 2001 .

[8]  Á. Seress,et al.  Groups St Andrews 1997 in Bath: Permutation group algorithms via black box recognition algorithms , 1999 .

[9]  K. Zsigmondy,et al.  Zur Theorie der Potenzreste , 1892 .

[10]  Derek F. Holt,et al.  Testing Matrix Groups for Primitivity , 1996 .

[11]  Scott H. Murray,et al.  Generating random elements of a finite group , 1995 .

[12]  Sergey Bratus,et al.  Fast Constructive Recognition of a Black Box Group Isomorphic to Sn or An using Goldbach's Conjecture , 2000, J. Symb. Comput..

[13]  Cheryl E. Praeger,et al.  Implementing a recognition algorithm for classical groups , 1995, Groups and Computation.

[14]  Derek F. Holt,et al.  Testing modules for irreducibility , 1994, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[15]  Frank Lübeck,et al.  On p-singular elements in Chevalley groups in characteristic ρ , 2001 .

[16]  Alexandre V. Borovik,et al.  Probabilistic recognition of orthogo-nal and symplectic groups , 1999 .

[17]  W. Kantor,et al.  Groups and Computation II , 1997 .

[18]  R. Carter Centralizers of Semisimple Elements in the Finite Classical Groups , 1981 .

[19]  A. S. Kondrat’ev,et al.  PRIME GRAPH COMPONENTS OF FINITE SIMPLE GROUPS , 1990 .

[20]  Peter A. Brooksbank A Constructive Recognition Algorithm for the Matrix Group Ω(d, q) , 2004 .

[21]  L. Babai,et al.  Groups St Andrews 1997 in Bath, I: A polynomial-time theory of black box groups I , 1999 .

[22]  Harold N. Ward,et al.  On Ree’s series of simple groups , 1966 .

[23]  M. S. Lucido The diameter of the prime graph of a finite group , 1999 .

[24]  Ernest E. Shult,et al.  On a class of doubly transitive groups , 1972 .

[25]  R. Sedgewick,et al.  Algorithms (2nd ed.) , 1988 .

[26]  G. Seitz,et al.  On the minimal degrees of projective representations of the finite Chevalley groups , 1974 .

[27]  C. Leedham-Green,et al.  The Atlas of Finite Groups - Ten Years on: A constructive recognition algorithm for the special linear group , 1998 .

[28]  Derek F. Holt,et al.  Computing Matrix Group Decompositions with Respect to a Normal Subgroup , 1996 .

[29]  R. Lawther The action of F4(q) on cosets of B4(q). , 1999 .

[30]  Peter A. Brooksbank,et al.  Constructive recognition of the finite simple classical groups , 2001 .

[31]  László Babai,et al.  Short Presentations for Finite Groups , 1992 .

[32]  Ákos Seress,et al.  Short Presentations for Three-Dimensional Unitary Groups☆ , 2001 .

[33]  D. Deriziotis The Centralizers of Semisimple Elements of the Chevalley Groups $E_7$ and $E_8$ , 1983 .

[34]  László Babai,et al.  Local expansion of vertex-transitive graphs and random generation in finite groups , 1991, STOC '91.

[35]  Jacques Tits,et al.  Projective representations of minimum degree of group extensions , 1978 .

[36]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[37]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[38]  G. Michler,et al.  Character table and blocks of finite simple triality groups , 1987 .

[39]  M. Aschbacher Chevalley groups of type G2 as the group of a trilinear form , 1987 .

[40]  Jeffrey Shallit,et al.  Factor refinement , 1993, SODA '90.

[41]  László Babai,et al.  Black-box recognition of finite simple groups of Lie type by statistics of element orders , 2002 .

[42]  N. Iwahori,et al.  The conjugacy classes of the finite Ree groups of type$(F_4)$ , 1975 .

[43]  J. S Williams,et al.  Prime graph components of finite groups , 1981 .

[44]  N. Iwahori,et al.  The conjugacy classes of Chevalley groups of type $(F_4)$ over finite fields of characteristic $p\ne 2$ , 1974 .

[45]  Charles R. Leedham-Green,et al.  Recognising Tensor Products of Matrix Groups , 1997, Int. J. Algebra Comput..

[46]  I. G. MacDonald,et al.  Lectures on Lie Groups and Lie Algebras: Simple groups of Lie type , 1995 .

[47]  Cheryl E. Praeger,et al.  A Recognition Algorithm For Classical Groups Over Finite Fields , 1998 .