Eigenvalues and eigenvectors of banded Toeplitz matrices and the related symbols
暂无分享,去创建一个
[1] U. Grenander,et al. Toeplitz Forms And Their Applications , 1958 .
[2] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[3] Eugene E. Tyrtyshnikov,et al. Spectra of multilevel toeplitz matrices: Advanced theory via simple matrix relationships , 1998 .
[4] Lothar Reichel,et al. Tridiagonal Toeplitz matrices: properties and novel applications , 2013, Numer. Linear Algebra Appl..
[5] G. Smith,et al. Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .
[6] Albrecht Böttcher,et al. Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols , 2015 .
[7] Stefano Serra,et al. On the extreme spectral properties of Toeplitz matrices generated byL1 functions with several minima/maxima , 1996 .
[8] Joseph Frederick Elliott. The Characteristic Roots of Certain Real Symmetric Matrices , 1953 .
[9] Stefano Serra Capizzano,et al. Are the Eigenvalues of Banded Symmetric Toeplitz Matrices Known in Almost Closed Form? , 2018, Exp. Math..
[10] Gene H. Golub,et al. How to Deduce a Proper Eigenvalue Cluster from a Proper Singular Value Cluster in the Nonnormal Case , 2005, SIAM J. Matrix Anal. Appl..
[11] J. M. Bogoya,et al. From convergence in distribution to uniform convergence , 2015, 1509.01836.
[12] Albrecht Böttcher,et al. Inside the eigenvalues of certain Hermitian Toeplitz band matrices , 2010, J. Comput. Appl. Math..
[13] Stefano Serra,et al. On the extreme eigenvalues of hermitian (block) toeplitz matrices , 1998 .
[14] Dario Bini,et al. SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .
[15] E. E. Tyrtyshnikov. A unifying approach to some old and new theorems on distribution and clustering , 1996 .
[16] Paolo Tilli,et al. A note on the spectral distribution of toeplitz matrices , 1998 .
[17] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[18] Stefano Serra-Capizzano,et al. Are the eigenvalues of the B-spline IgA approximation of −Δu = λu known in almost closed form? , 2017 .
[19] S. Serra-Capizzano,et al. Eigenvalues of banded symmetric Toeplitz matrices are known almost in close form ? , 2016 .
[20] Sergei M. Grudsky,et al. Eigenvalues of Hermitian Toeplitz Matrices Generated by Simple-loop Symbols with Relaxed Smoothness , 2017 .