Detecting cuts in sensor networks

We propose a low overhead scheme for detecting a network partition or cut in a sensor network. Consider a network S of n sensors, modeled as points in a two-dimensional plane. An /spl epsiv/-cut, for any 0</spl epsiv/<1, is a linear separation of /spl epsiv/n nodes in S from a distinguished node, the base station. We show that the base station can detect whenever an /spl epsiv/-cut occurs by monitoring the status of just O(1//spl epsiv/) nodes in the network. Our scheme is deterministic and it is free of false positives: no reported cut has size smaller than 1/2/spl epsiv/n. Besides this combinatorial result, we also propose efficient algorithms for finding the O(1//spl epsiv/) nodes that should act as sentinels, and report on our simulation results, comparing the sentinel algorithm with two natural schemes based on sampling.

[1]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[2]  Wei Hong,et al.  Beyond Average: Toward Sophisticated Sensing with Queries , 2003, IPSN.

[3]  Jon M. Kleinberg,et al.  Detecting a Network Failure , 2004, Internet Math..

[4]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[5]  P. Erdös,et al.  Dissection Graphs of Planar Point Sets , 1973 .

[6]  Srinivasan Seshan,et al.  Synopsis diffusion for robust aggregation in sensor networks , 2004, SenSys '04.

[7]  Leonidas J. Guibas,et al.  Collaborative signal and information processing: an information-directed approach , 2003 .

[8]  Bhaskar Krishnamachari,et al.  Maximizing Data Extraction in Energy-Limited Sensor Networks , 2004, IEEE INFOCOM 2004.

[9]  Deborah Estrin,et al.  Guest Editors' Introduction: Overview of Sensor Networks , 2004, Computer.

[10]  Sariel Har-Peled,et al.  Taking a walk in a planar arrangement , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[11]  David Eppstein Sets of points with many halving lines , 1992 .

[12]  Jirí Matousek Construction of ɛ-nets , 1990, Discret. Comput. Geom..

[13]  Gregory J. Pottie,et al.  Wireless integrated network sensors , 2000, Commun. ACM.

[14]  Herbert Edelsbrunner,et al.  Constructing Belts in Two-Dimensional Arrangements with Applications , 1986, SIAM J. Comput..

[15]  Géza Tóth Point Sets with Many k-Sets , 2001, Discret. Comput. Geom..

[16]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[17]  Divyakant Agrawal,et al.  Medians and beyond: new aggregation techniques for sensor networks , 2004, SenSys '04.

[18]  Tamal K. Dey,et al.  Improved Bounds for Planar k -Sets and Related Problems , 1998, Discret. Comput. Geom..

[19]  Satish Kumar,et al.  Next century challenges: scalable coordination in sensor networks , 1999, MobiCom.

[20]  B. Hohlt,et al.  Flexible power scheduling for sensor networks , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[21]  Deborah Estrin,et al.  An evaluation of multi-resolution storage for sensor networks , 2003, SenSys '03.

[22]  Johannes Gehrke,et al.  Query Processing in Sensor Networks , 2003, CIDR.

[23]  Mani Srivastava,et al.  Overview of sensor networks , 2004 .

[24]  Deborah Estrin,et al.  ASCENT : Adaptive Self-Configuring sEnsor Networks Topologies . , 2002 .

[25]  Chee-Yee Chong,et al.  Sensor networks: evolution, opportunities, and challenges , 2003, Proc. IEEE.

[26]  Godfried T. Toussaint,et al.  A simple linear algorithm for intersecting convex polygons , 1985, The Visual Computer.

[27]  James Newsome,et al.  GEM: Graph EMbedding for routing and data-centric storage in sensor networks without geographic information , 2003, SenSys '03.

[28]  Jiří Matoušek,et al.  Epsilon-Nets and Computational Geometry , 1993 .

[29]  Leonidas J. Guibas,et al.  A dual-space approach to tracking and sensor management in wireless sensor networks , 2002, WSNA '02.

[30]  Noga Alon,et al.  The number of small semispaces of a finite set of points in the plane , 1986, J. Comb. Theory, Ser. A.