Precise Synthesis of Regular and Asymmetric Star Polymers and Densely Branched Polymers with Starlike Structures by Means of Living Anionic Polymerization

The subject of this review is to present new synthetic methodologies recently developed by us, which are applicable to both regular and asymmetric star polymers with well-defined architectures. The first methodology involves the coupling reaction of a variety of living anionic polymers of styrene, α-methylstyrene, isoprene, tert-butyl methacrylate, and ethylene oxide with novel chain-end- and in-chain-functionalized polymers with a definite number of benzyl halide moieties intentionally designed as polymeric coupling agents. In the second methodology, we propose a new concept based on iterative approach, with which star polymers can be successively and, in principle, unlimitedly synthesized by repeating the iterative reaction sequence. Finally, a convenient synthesis of densely branched polymers with starlike structures is presented by the quantitative coupling reaction of living anionic polymers with reactive benzyl halide-functionalized backbone polymers based on a grafting-onto method.

[1]  A. Hirao,et al.  Synthesis of Branched Polymers by Means of Living Anionic Polymerization. 12. Anionic Synthesis of Well-Defined Star-Branched Polymers by Using Chain-End-Functionalized Polystyrenes with Dendritic Benzyl Bromide Moieties , 2002 .

[2]  Sang-Woog Ryu,et al.  Synthesis of Novel Well-Defined Substituted Polystyrenes Functionalized with Two and Four Benzyl Bromide Moieties in Each Monomer Unit and Their Application to Densely Branched Polymer Synthesis , 2002 .

[3]  Tomoya Higashihara,et al.  Synthesis of Branched Polymers by Means of Living Anionic Polymerization. 13. Synthesis of Well-Defined Star-Branched Polymers via an Iterative Approach Using Living Anionic Polymers , 2002 .

[4]  A. Hirao,et al.  Synthesis of well‐defined multifunctionalized polystyrenes with benzyl bromide moieties by a novel iterative divergent approach , 2002 .

[5]  Sang-Woog Ryu,et al.  Synthesis of branched polymers by means of living anionic polymerization — Part 6. Synthesis of well‐defined comb‐like branched polystyrenes and graft copolymers with highly branched architecture , 2002 .

[6]  Tomoya Higashihara,et al.  Synthesis of Branched Polymers by Means of Living Anionic Polymerization, 9. Radical Coupling Reaction of 1,1-Diphenylethylene-Functionalized Polymers with Potassium Naphthalenide and Its Application to Syntheses of In-Chain-Functionalized Polymers and Star-Branched Polymers , 2002 .

[7]  M. Sawamoto,et al.  Metal-catalyzed living radical polymerization. , 2001, Chemical reviews.

[8]  Youngjoon Lee,et al.  SYNTHESIS OF BRANCHED POLYMERS: AN INTRODUCTION* , 2001 .

[9]  M. Pitsikalis,et al.  Polymers with complex architecture by living anionic polymerization. , 2001, Chemical reviews.

[10]  A. Matsuo,et al.  Synthesis of heteroarm star‐branched polymers by means of anionic living polymerization , 2001 .

[11]  Tomoya Higashihara,et al.  Synthesis of Branched Polymers by Means of Living Anionic Polymerization, 8. Synthesis of Well-Defined Star-Branched Polymers by an Iterative Approach Based on Living Anionic Polymerization Using 1,1-Diphenylethylene Derivatives , 2001 .

[12]  K. Baek,et al.  Core-Functionalized Star Polymers by Transition Metal-Catalyzed Living Radical Polymerization. 1. Synthesis and Characterization of Star Polymers with PMMA Arms and Amide Cores1 , 2001 .

[13]  Sang-Woog Ryu,et al.  Synthesis of Branched Polymers by Means of Living Anionic Polymerization, 7. Synthesis of Well‐Defined Highly Branched Polymers and Graft Copolymers Having One Branch per Repeating Unit Using Poly(m‐halomethylstyrene)s as Backbone Polymers , 2001 .

[14]  A. Hirao,et al.  Synthesis of Branched Polymers by Means of Living Anionic Polymerization, 5. Synthesis of Star Polymers by Reactions of End-Functionalized Polystyrenes with Chloromethylphenyl Groups with Polymer Anions Consisting of Two Polymer Chains , 2001 .

[15]  A. Hirao,et al.  Synthesis of Well-Defined Chain-End and In-Chain-Functionalized Polystyrenes with a Definite Number of α-Methylstyrene, D-Glucose, Phenol, and Benzyl Halide Functionalities by Reactions of Chloro (or Bromo) methylphenyl-Functionalized Polystyrenes with Substituted 1,1-Diphenylalkyllithiums , 2001 .

[16]  P. Dumas,et al.  A New Route to Model (A2B) and Regular Graft Copolymers , 2001 .

[17]  K. Baek,et al.  Star-Shaped Polymers by Metal-Catalyzed Living Radical Polymerization. 1. Design of Ru(II)-Based Systems and Divinyl Linking Agents1 , 2001 .

[18]  S. Pispas,et al.  Complex Macromolecular Architectures by Combining TEMPO Living Free Radical and Anionic Polymerization , 2000 .

[19]  A. Hirao,et al.  Synthesis of well-defined functionalized polymers and star branched polymers by means of living anionic polymerization using specially designed 1,1-diphenylethylene derivatives , 2000 .

[20]  T. Lodge,et al.  Linear Melt Rheology and Small-Angle X-ray Scattering of AB Diblocks vs A2B2 Four Arm Star Block Copolymers , 2000 .

[21]  N. Hadjichristidis,et al.  Controlled Anionic Polymerization of Hexamethylcyclotrisiloxane. Model Linear and Miktoarm Star Co- and Terpolymers of Dimethylsiloxane with Styrene and Isoprene , 2000 .

[22]  K. Matyjaszewski,et al.  Graft copolymers of polyethylene by atom transfer radical polymerization , 2000 .

[23]  Sang-Woog Ryu,et al.  Anionic Synthesis of Well-Defined Poly(m-halomethylstyrene)s and Branched Polymers via Graft-onto Methodology , 2000 .

[24]  K. Matyjaszewski,et al.  End-Functional Poly(tert-butyl acrylate) Star Polymers by Controlled Radical Polymerization , 2000 .

[25]  J. Hedrick,et al.  Starlike Polymeric Architectures by Atom Transfer Radical Polymerization: Templates for the Production of Low Dielectric Constant Thin Films , 2000 .

[26]  A. Khokhlov,et al.  Effect of Architecture on the Micellization Properties of Block Copolymers: A2B Miktoarm Stars vs AB Diblocks , 2000 .

[27]  V. Abetz,et al.  Synthesis and morphology of ABC heteroarm star terpolymers of polystyrene, polybutadiene and poly(2‐vinylpyridine) , 2000 .

[28]  K. Matyjaszewski,et al.  The Synthesis of Hybrid Polymers Using Atom Transfer Radical Polymerization: Homopolymers and Block Copolymers from Polyhedral Oligomeric Silsesquioxane Monomers , 2000 .

[29]  Bumjae Lee,et al.  Applications of 1,1-Diphenylethylene Chemistry in Anionic Synthesis of Polymers with Controlled Structures , 2000 .

[30]  J. Mays,et al.  Macromolecular architecture effects on block copolymer dynamics. II. A2B simple grafts , 1999 .

[31]  K. Matyjaszewski,et al.  Copolymerization of n-Butyl Acrylate with Methyl Methacrylate and PMMA Macromonomers: Comparison of Reactivity Ratios in Conventional and Atom Transfer Radical Copolymerization , 1999 .

[32]  C. Billaud,et al.  Synthesis, dimensions and solution properties of linear and macrocyclic poly(chloroethyl vinyl ether)‐g‐polystyrene comblike polymers , 1999 .

[33]  A. Hirao,et al.  Synthesis of Well-Defined Functionalized Polystyrenes with a Definite Number of Chloromethylphenyl Groups at Chain Ends or in Chains by Means of Anionic Living Polymerization in Conjunction with Functional Group Transformation , 1999 .

[34]  C. Fernyhough,et al.  Synthesis and Characterization of Polyisoprene−Poly(methyl methacrylate) AB Diblock and A2B2 Heteroarm Star Copolymers , 1999 .

[35]  M. Hayashi,et al.  Recent advance in syntheses and applications of well-defined end-functionalized polymers by means of anionic living polymerization , 1999 .

[36]  E. Thomas,et al.  Macromolecular Architecture Effects on Block Copolymer Dynamics: Linear Tetrablocks and Inverse Starblocks , 1999 .

[37]  Apostolos Avgeropoulos,et al.  Hydrodynamic properties of A8B8 type miktoarm (Vergina) stars , 1999 .

[38]  K. Matyjaszewski,et al.  Synthesis of Star-Shaped Polystyrene by Atom Transfer Radical Polymerization Using an “Arm First” Approach , 1999 .

[39]  Shiro Kobayashi,et al.  Star and Hyperbranched Polymers , 1999 .

[40]  N. Hadjichristidis Synthesis of miktoarm star (?-star) polymers , 1999 .

[41]  K. Kojima,et al.  Synthesis of Star-Branched Polymers by Means of Anionic Living Polymerization Coupled with Functional Group Transformation , 1999 .

[42]  M. Pitsikalis,et al.  Asymmetric Star Polymers: Synthesis and Properties , 1999 .

[43]  N. Hadjichristidis,et al.  Synthesis of Model PS(PI)5 and (PI)5PS(PI)5 Nonlinear Block Copolymers of Styrene (S) and Isoprene (I) , 1999 .

[44]  A. Hirao,et al.  Synthesis of heteroarm star-branched polymers by means of anionic living polymerization in conjunction with functional group transformation , 1999 .

[45]  B. Charleux,et al.  Synthesis of Branched Polymers by Cationic Polymerization , 1999 .

[46]  E. Thomas,et al.  Direct Evidence for Confinement of Junctions to Lines in an 3 Miktoarm Star Terpolymer Microdomain Structure , 1998 .

[47]  R. Quirk,et al.  Trifunctional Organolithium Initiator Based on 1,3,5-Tris(1-Phenylethenyl)benzene. Synthesis of Functionalized, Three-Armed, Star-Branched Polystyrenes , 1998 .

[48]  M. Sawamoto,et al.  Calixarene-Core Multifunctional Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methacrylates1 , 1998 .

[49]  E. Thomas,et al.  Novel 2-Dimensionally Periodic Non-Constant Mean Curvature Morphologies of 3-Miktoarm Star Terpolymers of Styrene, Isoprene, and Methyl Methacrylate , 1998 .

[50]  S. Pispas,et al.  Micellization Behavior of (PS)8(PI)8 Miktoarm (Vergina) Star Copolymers , 1998 .

[51]  K. Matyjaszewski,et al.  Hydrogels by atom transfer radical polymerization. I. Poly(N-vinylpyrrolidinone-g-styrene) via the macromonomer method , 1998 .

[52]  Y. Bae,et al.  Living coupling reaction in living cationic polymerization. 2. Synthesis and characterization of Amphiphilic A2B2 star-block copolymer : Poly[bis(isobutylene)-star-bis(methyl vinyl ether)] , 1998 .

[53]  P. Dumas,et al.  Synthesis of amphiphilic triarm star block copolymers , 1998 .

[54]  J. Mays,et al.  Nonlinear Block Copolymer Architectures , 1998 .

[55]  M. Schappacher,et al.  New comblike copolymers of controlled structure and dimensions obtained by grafting by polystyryllithium onto poly(chloroethyl vinyl ether) chains , 1997 .

[56]  Y. Gnanou,et al.  Novel Amphiphilic Architectures by Ring-Opening Metathesis Polymerization of Macromonomers , 1997 .

[57]  N. B. Tan,et al.  Asymmetric single graft block copolymers: Effect of molecular architecture on morphology , 1997 .

[58]  A. Hirao,et al.  Synthesis of End-Functionalized Polymers by Means of Living Anionic Polymerization. 8. Reactions of Living Anionic Polymers with α,ω-Dihaloalkanes , 1997 .

[59]  F. Beyer,et al.  Morphology of Vergina Star 16-Arm Block Copolymers and Scaling Behavior of Interfacial Area with Graft Point Functionality , 1997 .

[60]  P. Dumas,et al.  Synthesis of an amphiphilic triarm star copolymer based on polystyrene, poly(ethylene oxide) and poly(ε-caprolactone) , 1997 .

[61]  N. Hadjichristidis,et al.  Synthesis of Model 3-Miktoarm Star Terpolymers of Styrene, Isoprene, and Methyl Methacrylate , 1997 .

[62]  Apostolos Avgeropoulos,et al.  Synthesis of model nonlinear block copolymers of A(BA)2, A(BA)3, and (AB)3A(BA)3 type , 1997 .

[63]  K. Hatada,et al.  Macromolecular Design of Polymeric Materials , 1997 .

[64]  N. Hadjichristidis,et al.  MORPHOLOGY OF MIKTOARM STAR BLOCK COPOLYMERS OF STYRENE AND ISOPRENE , 1996 .

[65]  V. Abetz,et al.  Synthesis of a polystyrene‐arm‐polybutadiene‐arm‐poly(methyl methacrylate) triarm star copolymer , 1996 .

[66]  Y. Gnanou,et al.  Synthesis of α-Norbornenylpoly(ethylene oxide) Macromonomers and Their Ring-Opening Metathesis Polymerization , 1996 .

[67]  E. Thomas,et al.  Architecturally-Induced Tricontinuous Cubic Morphology in Compositionally Symmetric Miktoarm Starblock Copolymers , 1996 .

[68]  M. Sawamoto,et al.  Synthesis of Star-Shaped Poly(p-Alkoxystyrenes) by Living Cationic Polymerization , 1996 .

[69]  N. Hadjichristidis,et al.  Synthesis and characterization of polyisoprene/polybutadiene A2B2 star copolymers , 1996 .

[70]  Y. Gnanou,et al.  Synthesis of α-norbornenyl polystyrene macromonomers and their ring-opening metathesis polymerization , 1996 .

[71]  Apostolos Avgeropoulos,et al.  Synthesis of Model 16-Miktoarm (Vergina†) Star Copolymers of the A8B8 Type , 1996 .

[72]  Y. Gnanou,et al.  Ring‐opening metathesis polymerization of ω‐norbornenyl polystyrene macromonomers and characterization of the corresponding structures , 1995 .

[73]  S. Kohjiya,et al.  Preparation and Characterization of α-Benzyl-ω-vinylbenzyl Polystyrene Macromonomer , 1994 .

[74]  W. Feast,et al.  Tailored copolymers via coupled anionic and ring opening metathesis polymerization. Synthesis and polymerization of bicyclo[2.2.1]hept-5-ene-2,3-trans-bis(polystyrylcarboxylate)s , 1994 .

[75]  Bumjae Lee,et al.  Anionic Synthesis of Heteroarm, Star-Branched Polymers. Scope and Limitations , 1994 .

[76]  J. Mays,et al.  Synthesis and characterization of poly(methyl methacrylate) star polymers , 1994 .

[77]  R. N. Young,et al.  Synthesis of styrene–isoprene A2B2 hetero‐armed star copolymers , 1994 .

[78]  M. Gauthier,et al.  Structural rigidity control in arborescent graft polymers , 1994 .

[79]  J. Kennedy,et al.  Multi-arm star polyisobutylenes , 1993 .

[80]  N. Hadjichristidis,et al.  Regular star polymers with 64 and 128 arms. Models for polymeric micelles , 1993 .

[81]  R. Quirk,et al.  Anionic synthesis of ω-1,1-diphenylethylene-terminated polystyrene macromonomers. Rational synthesis of ABC hetero three-armed-star-branched polymers , 1993 .

[82]  Nikos Hadjichristidis,et al.  Synthesis and characterization of model 4-miktoarm star co- and quaterpolymers , 1993 .

[83]  N. Hadjichristidis,et al.  Synthesis of a model 3-miktoarm star terpolymer , 1992 .

[84]  N. Hadjichristidis,et al.  Synthesis and Properties of Regular Star Polybutadienes with 32 Arms , 1992 .

[85]  Bumjae Lee,et al.  Anionic synthesis of polystyrene and polybutadiene heteroarm star polymers , 1992 .

[86]  M. Sawamoto,et al.  Tri-armed star polymers by living cationic polymerization. 1. Trifunctional initiators for living polymerization of isobutyl vinyl ether , 1991 .

[87]  Mario Gauthier,et al.  Uniform highly branched polymers by anionic grafting: arborescent graft polymers , 1991 .

[88]  M. Sawamoto,et al.  Star-shaped polymers by living cationic polymerization. 1. Synthesis of star-shaped polymers of alkyl and vinyl ethers , 1991 .

[89]  C. Tsitsilianis,et al.  Hetero-arm star copolymers with potentially ionogenic branches , 1991 .

[90]  O. Okay,et al.  Steric stabilization of reactive microgels from 1,4‐divinylbenzene , 1990 .

[91]  K. Freed,et al.  Characterization of branching architecture through "universal" ratios of polymer solution properties , 1990 .

[92]  J. Mays Synthesis of “simple graft” poly(isoprene-g-styrene) by anionic polymerization , 1990 .

[93]  James E. Martin,et al.  Synthesis and characterization of multiarm star polybutadienes , 1989 .

[94]  L. Fetters,et al.  Preparation of asymmetric 3-arm polybutadiene and polystyrene stars , 1988 .

[95]  P. Lutz,et al.  New developments in star polymer synthesis. Star‐shaped polystyrenes and star‐block copolymers , 1988 .

[96]  J. Mays,et al.  Star branched polystyrenes: an evaluation of solvent and temperature influences on unperturbed chain dimensions , 1988 .

[97]  J. Herz,et al.  Macromolecular engineering by anionic methods , 1988 .

[98]  H. Xie,et al.  Synthesis and properties of star shaped block copolymers of styrene and ethylene oxide , 1987 .

[99]  J. Roovers,et al.  Synthesis and properties of eighteen‐arm polybutadienes , 1986 .

[100]  H. Mark,et al.  Encyclopedia of polymer science and engineering , 1985 .

[101]  K. Freed,et al.  Renormalization and the two-parameter theory , 1984 .

[102]  K. Freed,et al.  Penetration function and second virial coefficient for linear and regular star polymers , 1984 .

[103]  N. Hadjichristidis,et al.  Analysis and dilute solution properties of 12- and 18-arm-star polystyrenes , 1983 .

[104]  J. Roovers,et al.  Preparation and characterization of H-shaped polystyrene , 1981 .

[105]  J. Kennedy,et al.  New telechelic polymers and sequential copolymers by polyfunctionalinitiator-transfer agents (inifers) , 1981 .

[106]  N. Hadjichristidis,et al.  Star-Branched Polymers. 4. Synthesis of 18-Arm Polyisoprenes , 1980 .

[107]  S. Bywater,et al.  Preparation and properties of star-branched polymers , 1979 .

[108]  L. Fetters,et al.  Star-Branched Polymers. 2. The Reaction of Dienyllithium Chains with the Isomers of Divinylbenzene , 1978 .

[109]  B. Bauer,et al.  Synthesis and Dilute-Solution Behavior of Model Star-Branched Polymers , 1978 .

[110]  N. Hadjichristidis,et al.  Star-Branched Polymers. 1. The Synthesis of Star Polyisoprenes Using Octa- and Dodecachlorosilanes as Linking Agents , 1978 .

[111]  L. Fetters,et al.  Synthesis and Properties of Block Copolymers. 3. Polystyrene-Polydiene Star Block Copolymers , 1976 .

[112]  N. Hadjichristidis,et al.  Synthesis and solution properties of linear, four-branched, and six-branched star polyisoprenes , 1974 .

[113]  S. Bywater,et al.  Preparation of Six-Branched Polystyrene. Thermodynamic and Hydrodynamic Porperties of Four- and Six-Branched Star Polystyrenes , 1974 .

[114]  W. Burchard,et al.  Preparation and some properties of star‐shaped polymers with more than hundred side chains , 1973 .

[115]  S. Bywater,et al.  Preparation and Characterization of Four-Branched Star Polystyrene , 1972 .

[116]  M. Nakata Excluded volume effects in dilute solutions of linear polystyrene , 1971 .

[117]  R. V. Leemput,et al.  Synthèse anionique de polystyrènes ramifiés en éatoile à quatre et six branches , 1971 .

[118]  P. Rempp,et al.  Préparation et caractérisation de polymères-modèle à structure en étoile, par copolymérisation séquencée anionique , 1969 .

[119]  V. Allen,et al.  Preparation and characterization of some star‐and comb‐type branched polystyrenes , 1965 .

[120]  R. Zelinski,et al.  Synthesis of trichain and tetrachain radial polybutadienes , 1965 .

[121]  B. Zimm,et al.  Dynamics of branched polymer molecules in dilute solution , 1959 .

[122]  M. Fixman,et al.  DILUTE SOLUTIONS OF BRANCHED POLYMERS , 1953 .