Quasi-random numbers for copula models
暂无分享,去创建一个
[1] Alexander J. McNeil,et al. Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.
[2] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[3] Alexander J. McNeil,et al. Estimators for Archimedean copulas in high dimensions , 2012, 1207.1708.
[4] Christiane Lemieux,et al. Generalized Halton sequences in 2008: A comparative study , 2009, TOMC.
[5] Edmund Hlawka,et al. Über eine Transformation von gleichverteilten Folgen II , 2005, Computing.
[6] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[7] Emiliano A. Valdez,et al. Simulating from Exchangeable Archimedean Copulas , 2007, Commun. Stat. Simul. Comput..
[8] Roger M. Cooke,et al. Sampling algorithms for generating joint uniform distributions using the vine-copula method , 2007, Comput. Stat. Data Anal..
[9] J. L. Nolan. Stable Distributions. Models for Heavy Tailed Data , 2001 .
[10] J. M. Sek,et al. On the L2-discrepancy for anchored boxes , 1998 .
[11] P. Embrechts,et al. Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .
[12] R. Nelsen. An Introduction to Copulas (Springer Series in Statistics) , 2006 .
[13] Christine M. Anderson-Cook,et al. Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.
[14] P. Embrechts,et al. Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .
[15] I. Olkin,et al. Families of Multivariate Distributions , 1988 .
[16] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[17] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[18] S. Kotz,et al. Symmetric Multivariate and Related Distributions , 1989 .
[19] Ronald Cools,et al. Using Box-Muller with Low Discrepancy Points , 2006, ICCSA.
[20] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[21] Jürgen Hartinger,et al. Quasi-Monte Carlo algorithms for unbounded, weighted integration problems , 2004, J. Complex..
[22] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .
[23] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[24] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[25] C. Aistleitner,et al. Functions of bounded variation, signed measures, and a general Koksma-Hlawka inequality , 2014, 1406.0230.
[26] H. Joe. Dependence Modeling with Copulas , 2014 .
[27] Fred J. Hickernell,et al. Algorithm 823: Implementing scrambled digital sequences , 2003, TOMS.
[28] A. Owen. Multidimensional variation for quasi-Monte Carlo , 2004 .
[29] Marius Hofert,et al. Construction and Sampling of Nested Archimedean Copulas , 2010 .
[30] Dirk Tasche,et al. Capital Allocation to Business Units and Sub-Portfolios: the Euler Principle , 2007, 0708.2542.
[31] Alexander J. McNeil,et al. Likelihood inference for Archimedean copulas in high dimensions under known margins , 2012, J. Multivar. Anal..
[32] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[33] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[34] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[35] Fabrizio Durante,et al. Copula Theory and Its Applications , 2010 .
[36] William J. Morokoff. Generating Quasi-Random Paths for Stochastic Processes , 1998, SIAM Rev..
[37] G. Simons,et al. On the theory of elliptically contoured distributions , 1981 .
[38] H. Bock,et al. Copulas and stochastic processes , 2003 .
[39] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..
[40] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[41] Art B. Owen,et al. Variance with alternative scramblings of digital nets , 2003, TOMC.
[42] Art B. Owen,et al. Variance and discrepancy with alternative scramblings , 2002 .
[43] J Lin. FUNCTIONS OF BOUNDED VARIATION OF ORDER 3 , 1957 .
[44] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[45] Florence Wu. Simulating Exchangeable Multivariate Archimedean Copulas and its Applications ∗ , 2005 .
[46] Edmund Hlawka. Über die Diskrepanz mehrdimensionaler Folgen mod. 1 , 1961 .
[47] F. Pillichshammer,et al. Digital Nets and Sequences: Nets and sequences , 2010 .
[48] R. Cranley,et al. Randomization of Number Theoretic Methods for Multiple Integration , 1976 .
[49] Paul Embrechts,et al. Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.
[50] M. Hofert. Sampling Nested Archimedean Copulas: with Applications to CDO Pricing , 2010 .
[51] A. McNeil,et al. Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges Motivated by Financial Applications , 2012 .
[52] Colas Schretter,et al. Monte Carlo and Quasi-Monte Carlo Methods , 2016 .
[53] C. Baxa. Calculation of improper integrals using uniformly distributed sequences , 2005 .
[54] G. Constantine,et al. A Multivariate Faa di Bruno Formula with Applications , 1996 .
[55] R. Nelsen. An Introduction to Copulas , 1998 .