Learning Representation and Control in Continuous Markov Decision Processes
暂无分享,去创建一个
Sridhar Mahadevan | Sarah Osentoski | Mauro Maggioni | Kimberly Ferguson | S. Mahadevan | Kimberly Ferguson | M. Maggioni | Sarah Osentoski
[1] Richard S. Sutton,et al. Introduction to Reinforcement Learning , 1998 .
[2] Sridhar Mahadevan,et al. Proto-value functions: developmental reinforcement learning , 2005, ICML.
[3] R. Taylor,et al. The Numerical Treatment of Integral Equations , 1978 .
[4] G. Micula,et al. Numerical Treatment of the Integral Equations , 1999 .
[5] John N. Tsitsiklis,et al. Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.
[6] Thomas G. Dietterich. Machine-Learning Research , 1997, AI Mag..
[7] John Platt,et al. FastMap, MetricMap, and Landmark MDS are all Nystrom Algorithms , 2005, AISTATS.
[8] S. Rosenberg. The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .
[9] Mikhail Belkin,et al. Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.
[10] Jitendra Malik,et al. Spectral Partitioning with Indefinite Kernels Using the Nyström Extension , 2002, ECCV.
[11] Matthias W. Seeger,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[12] Petros Drineas,et al. On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..
[13] S. Rosenberg. The Laplacian on a Riemannian Manifold: The Construction of the Heat Kernel , 1997 .
[14] Sridhar Mahadevan,et al. Fast direct policy evaluation using multiscale analysis of Markov diffusion processes , 2006, ICML.
[15] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[16] Michail G. Lagoudakis,et al. Least-Squares Policy Iteration , 2003, J. Mach. Learn. Res..
[17] Martin L. Puterman,et al. Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .
[18] Pietro Perona,et al. Self-Tuning Spectral Clustering , 2004, NIPS.