A KINETIC DATABASE FOR ASTROCHEMISTRY (KIDA)

We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense interstellar clouds with temperatures between 10 K and 300 K. We also provide a code, named Nahoon, to study the time-dependent gas-phase chemistry of zero-dimensional and one-dimensional interstellar sources.

[1]  M. Larsson,et al.  Branching ratios in dissociative recombination of the C2H2+ molecular ion , 1999 .

[2]  Y. H. Le Teuff,et al.  The UMIST database for astrochemistry 1999 , 2000 .

[3]  N. Adams,et al.  A study of the reactions of NH3+· and ND3+· with H2 and D2 at several temperatures , 1984 .

[4]  T. Carrington,et al.  Absolute rate constant for the CH + O reaction , 1980 .

[5]  T. Millar,et al.  The UMIST Database for Astrochemistry 1995 , 1997 .

[6]  D. Husain,et al.  Kinetic studies of atomic carbon, C[2p2(3PJ)], with small sulfur-containing molecules by time-resolved atomic resonance absorption spectroscopy in the vacuum ultra-violet , 2006 .

[7]  K. Hickson,et al.  A low temperature investigation of the N(4S degrees) + NO reaction. , 2009, Physical chemistry chemical physics : PCCP.

[8]  O. Parisel,et al.  Interstellar silicon-nitrogen chemistry. I. The microwave and the infrared signatures of the HSiN, HNSi, HSiNH2, HNSiH2 and HSiNH+ species , 1996 .

[9]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[10]  I. Smith,et al.  A theoretical analysis of the reaction between CN radicals and NH3. , 2009, Physical chemistry chemical physics : PCCP.

[11]  V. Anicich,et al.  The chemistry of phosphorus in dense interstellar clouds , 1984 .

[12]  T. Amano The dissociative recombination rate coefficients of H+3, HN+2, and HCO+ , 1990 .

[13]  V. Bierbaum,et al.  Reactions of C-n and CnH- with Atomic and Molecular Hydrogen , 2001 .

[14]  Jonathan Tennyson,et al.  Virtual Atomic and Molecular Data Centre , 2010 .

[15]  T. Millar,et al.  Rate Coefficients in Astrochemistry. Proceedings of a Conference held in UMIST, Manchester, United Kingdom, September 21-24, 1987. , 1988 .

[16]  D. Xie,et al.  O+OH-->O(2)+H: A key reaction for interstellar chemistry. New theoretical results and comparison with experiment. , 2009, The Journal of chemical physics.

[17]  Zhuangjie Li,et al.  Rate constant measurement for the OH + OH → H2O + O reaction at 220–320 K using discharge flow/mass spectrometer/resonance fluorescence technique , 2004 .

[18]  E. Dishoeck,et al.  The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks , 2009, 0906.3699.

[19]  T. Millar,et al.  Dissociative Recombination of the Thioformyl (HCS+) and Carbonyl Sulfide (OCS+) Cations , 2005 .

[20]  Kinetic Study of OH + OH and OD + OD Reactions , 1999 .

[21]  Resetting chemical clocks of hot cores based on S-bearing molecules , 2004, astro-ph/0404246.

[22]  NON-THRESHOLD, THRESHOLD, AND NONADIABATIC BEHAVIOR OF THE KEY INTERSTELLAR C + C2H2 REACTION , 2009 .

[23]  S. Shin,et al.  Proton affinity and heat of formation of silylene , 1986 .

[24]  A. Dalgarno,et al.  Electron Energy Deposition in a Gas Mixture of Atomic and Molecular Hydrogen and Helium , 1999 .

[25]  B. Rowe,et al.  Reactions of N+(3P) ions with normal, para, and deuterated hydrogens at low temperatures , 1988 .

[26]  Jon C. Helton,et al.  Survey of sampling-based methods for uncertainty and sensitivity analysis , 2006, Reliab. Eng. Syst. Saf..

[27]  B. Barzel,et al.  Incorporation of stochastic chemistry on dust grains in the Meudon PDR code using moment equations I. Application to the formation of H2 and HD , 2009, 0907.0355.

[28]  J. Mitchell,et al.  Energy dependence of dissociative recombination below 0. 08 eV measured with (electron-ion) merged-beam technique , 1979 .

[29]  M. Bacchus-Montabonel,et al.  Quantum dynamics of the charge transfer in C+ + S at low collision energies , 2010 .

[30]  V. Wakelam,et al.  Sulfur chemistry: 1D modeling in massive dense cores , 2011, 1103.2860.

[31]  A. J. Markwick-Kemper,et al.  The UMIST Database for Astrochemistry 2006 , 2007 .

[32]  A. Thompson,et al.  Effect of chemical kinetics uncertainties on calculated constituents in a tropospheric photochemical model , 1991 .

[33]  S. Cazaux,et al.  ERRATUM: “H2 FORMATION ON GRAIN SURFACES” (2004, ApJ, 604, 222) , 2010 .

[34]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice , 2002 .

[35]  Monte Carlo simulations of H2 formation on grains of varying surface roughness , 2005 .

[36]  S. Barlow,et al.  The effects of isotopic substitution on abstraction reactions of ammonia ions with hydrogen at very low temperatures , 1987 .

[37]  Ian W. M. Smith,et al.  Comparison of the cross-sections and thermal rate constants for the reactions of C(3PJ) atoms with O2 and NO , 2000 .

[38]  V. Bierbaum,et al.  Reactions of H, N, and O Atoms with Carbon Chain Anions of Interstellar Interest: An Experimental Study , 2007 .

[39]  V. Anicich,et al.  An ICR study of ion—molecule reactions of PHn+ ions , 1983 .

[40]  V. Zhaunerchyk,et al.  Rate constants and branching ratios for the dissociative recombination of CO2(+). , 2005, The Journal of chemical physics.

[41]  V. Wakelam,et al.  A sensitivity study of the neutral-neutral reactions C + C3 and C + C5 in cold dense interstellar clouds , 2009, 0901.1746.

[42]  Xuri Huang,et al.  Direct ab initio dynamics study of radical C4H (X̃2Σ+) + CH4 reaction. , 2011, Journal of Physical Chemistry A.

[43]  Fragmentation branching ratios of highly excited hydrocarbon molecules CnH and their cations CnH+ (n, 2008, The Journal of chemical physics.

[44]  A. Tielens The Physics and Chemistry of the Interstellar Medium , 2005 .

[45]  D. Weisenstein,et al.  Kinetics of reactions of ground state nitrogen atoms (4S3/2) with NO and NO2 , 1994 .

[46]  The Formation of Interstellar C2N Isomers in Circumstellar Envelopes of Carbon Stars: An Ab Initio Study , 2002 .

[47]  E. Herbst,et al.  QUANTUM CHEMICAL PREDICTIONS OF THE PROPERTIES OF KNOWN AND POSTULATED NEUTRAL INTERSTELLAR MOLECULES , 2009 .

[48]  C. Vinckier Determination of the rate constant of the reaction CH + O .fwdarw. CHO+ + e- at 295 K , 1979 .

[49]  V. Bierbaum,et al.  Formation of gas-phase glycine and cyanoacetylene via associative detachment reactions. , 2009, Astrobiology.

[50]  The Chemistry of Fluorine-bearing Molecules in Diffuse and Dense Interstellar Gas Clouds , 2005, astro-ph/0504304.

[51]  J. Gauss,et al.  High-accuracy extrapolated ab initio thermochemistry of the propargyl radical and the singlet C(3)H(2) carbenes. , 2009, The journal of physical chemistry. A.

[52]  J. Weisheit,et al.  Electron transfer in ion–dust grain collisions , 1978 .

[53]  G. Nyman,et al.  Rate coefficient of CN formation through radiative association: a theoretical study of quantum effects. , 2009, The Journal of chemical physics.

[54]  J. Troe Statistical adiabatic channel model for ion–molecule capture processes. II. Analytical treatment of ion–dipole capture , 1996 .

[55]  R. Gredel,et al.  The C/CO Ratio in Dense Interstellar Clouds , 1987 .

[56]  A. Tielens,et al.  Evolution of interstellar dust , 1987 .

[57]  E. Herbst,et al.  THE EFFECTS OF GRAIN SIZE AND GRAIN GROWTH ON THE CHEMICAL EVOLUTION OF COLD DENSE CLOUDS , 2011 .

[58]  M. Banaszkiewicz,et al.  Uncertainty analysis of bimolecular reactions in Titan ionosphere chemistry model , 2007 .

[59]  Roger Atkinson,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reaxtions of Ox, HOx, NOx and SOx species , 2004 .

[60]  Ronald K. Hanson,et al.  High temperature reaction rate coefficients derived from N-atom ARAS measurements and excimer photolysis of NO , 1990 .

[61]  E. Herbst,et al.  Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules , 1992 .

[62]  K. Homann,et al.  Blue-green Chemiluminescence in the System C2H2/O/H. Formation of the Emitters CH(A2Δ), C2(d3Πg) and C2H* , 1982 .

[63]  M. Larsson,et al.  Dissociative recombination of C3H4+: preferential formation of the C3H3 radical , 2004 .

[64]  B. Draine Photoelectric heating of interstellar gas , 1978 .

[65]  Nadia Balucani,et al.  Low temperature rate coefficients for reactions of the butadiynyl radical, C4H, with various hydrocarbons. Part I: reactions with alkanes (CH4, C2H6, C3H8, C4H10). , 2010, Physical chemistry chemical physics : PCCP.

[66]  N. Adams,et al.  Product-ion distributions for some ion-molecule reactions , 1976 .

[67]  B. Jonkheid,et al.  Photoprocesses in protoplanetary disks. , 2006, Faraday discussions.

[68]  T. Fujii,et al.  Mass spectrometry of free radicals. , 2002, Chemical reviews.

[69]  T. Cravens,et al.  Ionization, dissociation, and heating efficiencies of cosmic rays in a gas of molecular hydrogen. , 1978 .

[70]  F. Billebaud,et al.  Key reactions in the photochemistry of hydrocarbons in Neptune's stratosphere , 2010 .

[71]  T. Millar,et al.  Dissociative Recombination of N2H+: Evidence for Fracture of the N-N Bond , 2004 .

[72]  Ian W. M. Smith,et al.  Kinetics of the Radical−Radical Reaction, O(3PJ) + OH(X2ΠΩ) → O2 + H, at Temperatures down to 39 K† , 2006 .

[73]  Zhibo Yang,et al.  GAS-PHASE REACTIONS OF HYDRIDE ANION, H− , 2010 .

[74]  Ian W. M. Smith,et al.  Ultralow temperature kinetics of neutral–neutral reactions. The technique and results for the reactions CN+O2 down to 13 K and CN+NH3 down to 25 K , 1994 .

[75]  J. L. Bourlot,et al.  A Model for Atomic and Molecular Interstellar Gas: The Meudon PDR Code , 2006, astro-ph/0602150.

[76]  N. Adams,et al.  Some positive ion reactions with H2: interstellar implications. , 1981 .

[77]  J. Loison,et al.  Rate constants and the H atom branching ratio of the reactions of the methylidyne CH(X2pi) radical with C2H2, C2H4, C3H4 (methylacetylene and allene), C3H6 (propene) and C4H8 (trans-butene). , 2009, Physical chemistry chemical physics : PCCP.

[78]  E. Herbst,et al.  THE INTERSTELLAR GAS PHASE PRODUCTION OF HIGHLY COMPLEX HYDROCARBONS : CONSTRUCTION OF A MODEL , 1995 .

[79]  R. Sharma,et al.  Quasiclassical trajectory study of the N(4S)+NO(X2Π)→N2(X1Σ+g)+O(3P) reaction rate coefficient , 1996 .

[80]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[81]  D. Albritton,et al.  Energy dependence of the reaction NH3+ + H2 → NH4+ + H , 1975 .

[82]  Edwin E. Salpeter,et al.  Surface recombination of hydrogen molecules , 1971 .

[83]  L. H. Andersen,et al.  Dissociative Recombination of H3O+, HD2O+, and D3O+ , 2000 .

[84]  E. Herbst,et al.  Calculations on the rates, mechanisms, and interstellar importance of the reactions between C and NH2 and between N and CH2 , 2000 .

[85]  E. Herbst,et al.  Synthesis of complex molecules in dense interstellar clouds via gas-phase chemistry: a pseudo time-dependent calculation , 1984 .

[86]  L. Curtiss,et al.  Photoionization mass spectrometric study and ab initio calculations of ionization and bonding in P–H compounds; heats of formation, bond energies, and the 3B1–1A1 separation in PH+2 , 1986 .

[87]  P. Caubet,et al.  Fast flow studies of atomic carbon kinetics at room temperature , 1991 .

[88]  H. Johnston,et al.  Computation of high-temperature rate constants for bimolecular reactions of combustion products , 1967 .

[89]  A. D. McLean,et al.  A priori predictions of the rotational constants for HC13N, HC15N, C5O. , 1989, Chemical physics letters.

[90]  S. Prasad,et al.  A model for gas phase chemistry in interstellar clouds. I - The basic model, library of chemical reactions, and chemistry among C, N, and O compounds , 1980 .

[91]  R. Kaiser,et al.  Chemical dynamics of the formation of the 1,3-butadiynyl radical (C4H(X2Sigma+)) and its isotopomers. , 2006, The journal of physical chemistry. A.

[92]  V. Wakelam,et al.  Polycyclic Aromatic Hydrocarbons in Dense Cloud Chemistry , 2008, 0802.3757.

[93]  F. Petit,et al.  Statistical universal branching ratios for cosmic ray dissociation, photodissociation, and dissociative recombination of the C(n=2-10), C(n=2-4)H and C3H2 neutral and cationic species , 2010, 1010.0119.

[94]  J. Futrell,et al.  Ion cyclotron resonance studies of some reactions of C+ ions☆ , 1976 .

[95]  J. L. Bourlot,et al.  Sensitivity analyses of dense cloud chemical models , 2010, 1004.1902.

[96]  E. Dishoeck,et al.  Photodissociation of small carbonaceous molecules of astrophysical interest , 2008, 0806.0083.

[97]  M. Larsson,et al.  Dissociative recombination of C2H+ and C2H4+: Absolute cross sections and product branching ratios , 2004 .

[98]  N. Balucani,et al.  Low temperature rate coefficients for reactions of the butadiynyl radical, C4H, with various hydrocarbons. Part II: reactions with alkenes (ethylene, propene, 1-butene), dienes (allene, 1,3-butadiene) and alkynes (acetylene, propyne and 1-butyne). , 2010, Physical chemistry chemical physics : PCCP.

[99]  È. Roueff,et al.  Sulphur-bearing molecules as tracers of shocks in interstellar clouds , 1993 .

[100]  Monte Carlo simulations of H2 formation on stochastically heated grains , 2006, astro-ph/0601554.

[101]  Ian W. M. Smith Effects of Quantum Mechanical Tunneling on Rates of Radiative Association , 1989 .

[102]  Michael A. Collins,et al.  Interpolated potential energy surface and reaction dynamics for O(3P)+H3+(1A1′) and OH+(3Σ−)+H2(1Σg+) , 1999 .

[103]  V. Wakelam,et al.  A NEW NETWORK FOR HIGHER-TEMPERATURE GAS-PHASE CHEMISTRY. I. A PRELIMINARY STUDY OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI , 2010 .

[104]  O. Morata,et al.  Observing a column-dependent ζ in dense interstellar sources: the case of the Horsehead nebula , 2011, 1110.2399.

[105]  V. Anicich Evaluated Bimolecular Ion‐Molecule Gas Phase Kinetics of Positive Ions for Use in Modeling Planetary Atmospheres, Cometary Comae, and Interstellar Clouds , 1993 .

[106]  M. Larsson,et al.  Dissociative recombination of C 2 H 3 , 2002 .

[107]  D. Clouthier,et al.  Hyperfine structure and the Stark effect in the electronic spectrum of the SiCH radical with implications for microwave spectroscopy and radioastronomy , 2001 .

[108]  M. Sergent,et al.  Experimental designs for the determination of key reactions in photochemical models: Application to the photochemistry of hydrocarbons in the atmosphere of Titan , 2008 .

[109]  Estimation and reduction of the uncertainties in chemical models: application to hot core chemistry , 2005, astro-ph/0509194.

[110]  E. Herbst,et al.  Association reactions. Theoretical shortcomings , 1989 .

[111]  D. Vroom,et al.  Production of Excited Atoms by Impact of Fast Electrons on Molecular Hydrogen and Deuterium , 1969 .

[112]  R. Kaiser,et al.  A Crossed Beam and ab Initio Investigation of the Reaction of Hydrogen Sulfide, H2S(X1A1), with Dicarbon Molecules, C2(X1Σg+) , 2002 .

[113]  G. Schatz,et al.  The CH+H reaction studied with quantum-mechanical and classical trajectory calculations , 2002 .

[114]  H. Ozeki,et al.  Laboratory Microwave Spectroscopy of the Cyanomethyl Radical, CH2CN , 2004 .

[115]  M. Costes,et al.  Kinetic measurements on methylidyne radical reactions with several hydrocarbons at low temperatures. , 2005, Physical chemistry chemical physics : PCCP.

[116]  Steven Zabarnick,et al.  Kinetics of CH radical reactions with N2O, SO2, OCS, CS2, and SF6 , 1989 .

[117]  P. Wiesen,et al.  Kinetics of the NCO radical reacting with atoms and selected molecules , 2000 .

[118]  W. A. Payne,et al.  Absolute rate of the reaction of N(4S) with NO from 196–400 K with DF–RF and FP–RF techniques , 1978 .

[119]  Ian W. M. Smith,et al.  Kinetics of reactions between neutral free radicals. Rate constants for the reaction of CH radicals with N atoms between 216 and 584 K , 1996 .

[120]  M. Alcamí,et al.  Fragmentation of highly excited small neutral carbon clusters. , 2004, Physical review letters.

[121]  E. Herbst,et al.  Modeling Carbon Chain Anions in L1527 , 2008, 0808.1249.

[122]  S. Prasad,et al.  UV radiation field inside dense clouds: its possible existence and chemical implications , 1983 .

[123]  T. Henning,et al.  Chemistry in Disks. IV. Benchmarking gas-grain chemical models with surface reactions , 2010, 1007.2302.

[124]  B. Engelhardt,et al.  Rate constants for CH(X 2Π) reactions at low total pressures , 1989 .

[125]  R. J. Richardson,et al.  Temperature dependence of the rate constant for the reaction between carbon monosulfide and atomic oxygen , 1999 .

[126]  Ian W. M. Smith,et al.  Reaction Networks for Interstellar Chemical Modelling: Improvements and Challenges , 2010, 1011.1184.

[127]  E. Herbst An update of and suggested increase in calculated radiative association rate coefficients , 1985 .

[128]  V. Bierbaum,et al.  Gas Phase Study of C+ Reactions of Interstellar Relevance , 2008 .

[129]  E. Herbst Can Gas Phase Reactions Produce Complex Oxygen-containing Molecules in Dense Interstellar Clouds? A Revision of Some Important Radiative Association Rate Coefficients , 1987 .

[130]  P. Pernot,et al.  How measurements of rate coefficients at low temperature increase the predictivity of photochemical models of Titan's atmosphere. , 2009, The journal of physical chemistry. A.

[131]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[132]  D. Heard,et al.  Kinetics of the N+NCO reaction at 298 K , 1997 .

[133]  V. Anicich,et al.  A survey of bimolecular ion-molecule reactions for use in modeling the chemistry of planetary atmospheres, cometary comae, and interstellar clouds , 1986 .

[134]  Pablo Gamallo,et al.  Quantum real wave-packet dynamics of the N(S4)+NO(X̃Π2)→N2(X̃Σg+1)+O(P3) reaction on the ground and first excited triplet potential energy surfaces: Rate constants, cross sections, and product distributions , 2006 .

[135]  Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores , 2006, astro-ph/0607560.

[136]  E. Herbst,et al.  Cosmic-ray-induced photodissociation and photoionization rates of interstellar molecules , 1989 .