A survey on participating media rendering techniques

Rendering participating media is important for a number of domains, ranging from commercial applications (entertainment, virtual reality) to simulation systems (driving, flying, and space simulators) and safety analyses (driving conditions, sign visibility). This article surveys global illumination algorithms for environments including participating media. It reviews both appearance-based and physically-based media methods, including the single-scattering and the more general multiple-scattering techniques. The objective of the survey is the characterization of all these methods: identification of their base techniques, assumptions, limitations, and range of utilization. It concludes with some reflections about the suitability of the methods depending on the specific application involved, and possible future research lines.

[1]  Kadi Bouatouch,et al.  Global Illumination in Presence of Participating Media with General Properties , 1995 .

[2]  Yoshinori Dobashi,et al.  Display of clouds taking into account multiple anisotropic scattering and sky light , 1996, SIGGRAPH.

[3]  Lisa M. Sobierajski,et al.  Global illumination models for volume rendering , 1994 .

[4]  Mark Watt,et al.  Light-water interaction using backward beam tracing , 1990, SIGGRAPH.

[5]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[6]  Toshi Kato,et al.  "Kilauea"--parallel global illumination renderer , 2002, Parallel Comput..

[7]  K. D. Lathrop RAY EFFECTS IN DISCRETE ORDINATES EQUATIONS. , 1968 .

[8]  P. Barber Absorption and scattering of light by small particles , 1984 .

[9]  Jos Stam,et al.  Multiple Scattering as a Diffusion Process , 1995, Rendering Techniques.

[10]  Nelson L. Max,et al.  Atmospheric illumination and shadows , 1986, SIGGRAPH.

[11]  Erik Reinhard,et al.  Practical Parallel Rendering , 2002, Practical Parallel Rendering.

[12]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[13]  Julie Dorsey,et al.  Rendering of Wet Materials , 1999, Rendering Techniques.

[14]  Anselmo Lastra,et al.  Real‐Time Cloud Rendering , 2001, Comput. Graph. Forum.

[15]  George Drettakis,et al.  A Clustering Algorithm for Radiance Calculation in General Environments , 1995, Rendering Techniques.

[16]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[17]  Yves D. Willems,et al.  Rendering Participating Media with Bidirectional Path Tracing , 1996, Rendering Techniques.

[18]  John Irwin,et al.  Full-Spectral Rendering of the Earth ’ s Atmosphere using a Physical Model of Rayleigh Scattering , 1996 .

[19]  Holly Rushmeier,et al.  Realistic image synthesis for scenes with radiatively participating media , 1988 .

[20]  Joe Michael Kniss,et al.  A Model for Volume Lighting and Modeling , 2003, IEEE Trans. Vis. Comput. Graph..

[21]  Kenneth E. Torrance,et al.  The zonal method for calculating light intensities in the presence of a participating medium , 1987, SIGGRAPH.

[22]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[23]  B. Roysam,et al.  A numerical approach to the computation of light propagation through turbid media: Application to the evaluation of lighted exit signs , 1991, Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting.

[24]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[25]  Timothy A. Davis,et al.  Practical Parallel Rendering , 2002 .

[26]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[27]  Ian T. Foster,et al.  Designing and building parallel programs - concepts and tools for parallel software engineering , 1995 .

[28]  F. Clarke On _{_{*}()}(_{*}(), _{*}()) , 1979 .

[29]  Christophe Schlick,et al.  An Importance Driven Monte-Carlo Solution to the Global Illumination Problem , 1995 .

[30]  Dipl.-Ing,et al.  Real-time Rendering , 2022 .

[31]  J. Stam Multi-scale stochastic modelling of complex natural phenomena , 1996 .

[32]  Peter Shirley,et al.  A practical analytic model for daylight , 1999, SIGGRAPH.

[33]  N. Max Efficient light propagation for multiple anisotropic volume scattering , 1995 .

[34]  François X. Sillion,et al.  Global Illumination Techniques for the Simulation of Participating Media , 1997, Rendering Techniques.

[35]  Neeharika Adabala,et al.  Modeling and rendering of gaseous phenomena using particle maps , 2000, Comput. Animat. Virtual Worlds.

[36]  Kazufumi Kaneda,et al.  A simple, efficient method for realistic animation of clouds , 2000, SIGGRAPH.

[37]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[38]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[39]  Tomoyuki Nishita,et al.  Display of the earth taking into account atmospheric scattering , 1993, SIGGRAPH.

[40]  Yoshinori Dobashi,et al.  A Modeling and Rendering Method for Snow by Using Metaballs , 1997, Comput. Graph. Forum.

[41]  Per H. Christensen,et al.  Hierarchical techniques for glossy global illumination , 1996 .

[42]  R. Victor Klassen,et al.  Modeling the effect of the atmosphere on light , 1987, TOGS.

[43]  Didier Arquès,et al.  Real-Time Animation of Realistic Fog , 2002 .

[44]  Ken Perlin,et al.  An image synthesizer , 1988 .

[45]  Holly Rushmeier,et al.  Rendering Participating Media: Problems and Solutions from Application Areas , 1995 .

[46]  Mark J. Harris Real-Time Cloud Rendering for Games , 2002 .

[47]  Jos Stam,et al.  Stochastic Rendering of Density Fields , 2007 .

[48]  Michael Ashikhmin,et al.  Rendering natural waters , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[49]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[50]  Eric Dumont,et al.  Semi-Monte Carlo Light Tracing Applied to the Study of Road Visibility in Fog , 2000 .

[51]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[52]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[53]  Yoshinori Dobashi,et al.  Interactive rendering of atmospheric scattering effects using graphics hardware , 2002, HWWS '02.

[54]  Bertram Walter,et al.  Modeling and Rendering of the Atmosphere Using Mie‐Scattering , 1997, Comput. Graph. Forum.

[55]  Eva Cerezo,et al.  Rendering Natural Waters: Merging Computer Graphics with Physics and Biology , 2002 .

[56]  Georgios Sakas,et al.  Sampling and anti-aliasing of discrete 3-D volume density textures , 1991, Comput. Graph..

[57]  Georgios Sakas,et al.  Interactive visualization of large scalar voxel fields , 1992, Proceedings Visualization '92.

[58]  Masa Inakage,et al.  An Illumination Model for Atmospheric Environments , 1989 .

[59]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[60]  David S. Ebert,et al.  Efficient Rendering of Atmospheric Phenomena , 2004, Rendering Techniques.

[61]  Craig Upson,et al.  Combining physical and visual simulation—creation of the planet Jupiter for the film “2010” , 1986, SIGGRAPH.

[62]  Eugene Fiume,et al.  Turbulent wind fields for gaseous phenomena , 1993, SIGGRAPH.

[63]  Tomoyuki Nishita,et al.  Method of displaying optical effects within water using accumulation buffer , 1994, SIGGRAPH.

[64]  Pat Hanrahan,et al.  Ray tracing on a connection machine , 1988, ICS '88.

[65]  Sumanta N. Pattanaik,et al.  Computation of global illumination in a participating medium by monte carlo simulation , 1993, Comput. Animat. Virtual Worlds.

[66]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[67]  Pat Hanrahan,et al.  Reflection from layered surfaces due to subsurface scattering , 1993, SIGGRAPH.

[68]  M. R. Bottaccini,et al.  Thermal Radiation Heat Transfer (2nd Edition) , 1982 .

[69]  Werner Purgathofer,et al.  Tone Reproduction and Physically Based Spectral Rendering , 2002, Eurographics.

[70]  J. P. Willis Visual Simulation of Atmospheric Haze , 1987, Comput. Graph. Forum.

[71]  Tomoyuki Nishita,et al.  A shading model for atmospheric scattering considering luminous intensity distribution of light sources , 1987, SIGGRAPH.

[72]  Werner Purgathofer,et al.  Eurographics Symposium on Rendering (2004) an Analytical Model for Skylight Polarisation , 2022 .

[73]  C. Bohren Multiple scattering of light and some of its observable consequences , 1987 .

[74]  James Arvo,et al.  A clustering algorithm for radiosity in complex environments , 1994, SIGGRAPH.

[75]  Claude Puech,et al.  Radiosity and global illumination , 1994 .

[76]  Shree K. Nayar,et al.  Practical Rendering of Multiple Scattering Effects in Participating Media , 2004, Rendering Techniques.

[77]  Peter Shirley,et al.  Path Integration for Light Transport in Volumes , 2003, Rendering Techniques.

[78]  Alexander Keller,et al.  Metropolis Light Transport for Participating Media , 2000, Rendering Techniques.

[79]  Frédo Durand,et al.  A physically-based night sky model , 2001, SIGGRAPH.

[80]  Ian Foster,et al.  Designing and building parallel programs , 1994 .

[81]  Per H. Christensen,et al.  Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.

[82]  Chris Patmore,et al.  Simulated Multiple Scattering for Cloud Rendering , 1993, ICCG.

[83]  Christophe Schlick,et al.  A Rendering Algorithm for Discrete Volume Density Objects , 1993, Comput. Graph. Forum.

[84]  É. Languénou,et al.  Radiosite hierarchique et transfert radiatif dans les milieux semi-transparents , 1994 .

[85]  Hideo Yamashita,et al.  Display Method of the Sky Color Taking into Account Multiple Scattering , 2000 .

[86]  Kazufumi Kaneda,et al.  Modeling of Skylight and Rendering of Outdoor Scenes , 1993, Comput. Graph. Forum.

[87]  Robert J. Schalkoff,et al.  Lattice-Boltzmann Lighting , 2004, Rendering Techniques.

[88]  Georgios Sakas,et al.  Modeling and animating turbulent gaseous phenomena using spectral synthesis , 2005, The Visual Computer.

[89]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..

[90]  François X. Sillion,et al.  Acceleration of Monte Carlo path tracing in general environments , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[91]  David S. Ebert,et al.  Rendering and animation of gaseous phenomena by combining fast volume and scanline A-buffer techniques , 1990, SIGGRAPH.

[92]  Pat Hanrahan,et al.  A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.

[93]  Georgios Sakas,et al.  Fast Rendering of Arbitrary Distributed Volume Densities , 1990, Eurographics.

[94]  Takashi Okamoto,et al.  Photorealistic image synthesis for outdoor scenery under various atmospheric conditions , 1991, The Visual Computer.

[95]  James F. Blinn,et al.  Light reflection functions for simulation of clouds and dusty surfaces , 1982, SIGGRAPH.

[96]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[97]  Philipp Slusallek,et al.  Realtime Ray Tracing and its use for Interactive Global Illumination , 2003, Eurographics.

[98]  Didier Arquès,et al.  Proximity Radiosity: Exploiting Coherence to Accelerate Form Factor Computations , 1996, Rendering Techniques.

[99]  Tomas Akenine-Möller,et al.  Real-Time Rendering, Second Edition , 2002 .

[100]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[101]  Eugene Fiume,et al.  Depicting fire and other gaseous phenomena using diffusion processes , 1995, SIGGRAPH.

[102]  François X. Sillion,et al.  A Unified Hierarchical Algorithm for Global Illumination with Scattering Volumes and Object Clusters , 1995, IEEE Trans. Vis. Comput. Graph..

[103]  Xavier Pueyo,et al.  High Quality Final Gathering for Hierarchical Monte Carlo Radiosity for General Environments , 2002 .