On the use of the Dual Norms in Bounded Variation Type Regularization

Recently Y. Meyer gave a characterization of the minimizer o f the Rudin-OsherFatemi functional in terms of the -norm. In this work we generalize this result to regularization models with higher order derivatives of b unded variation. This requires us to define generalized -norms. We present some numerical experiments to support the theoretical considerations.

[1]  S. B. Childs,et al.  INVERSE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS. , 1968 .

[2]  Françoise Demengel,et al.  Fonctions à hessien borné , 1984 .

[3]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[4]  Victor Isakov,et al.  Inverse Source Problems , 1990 .

[5]  L. Evans Measure theory and fine properties of functions , 1992 .

[6]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[7]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[8]  S. Geer,et al.  Locally adaptive regression splines , 1997 .

[9]  Tony F. Chan,et al.  High-Order Total Variation-Based Image Restoration , 2000, SIAM J. Sci. Comput..

[10]  V. Caselles,et al.  Minimizing total variation flow , 2000, Differential and Integral Equations.

[11]  Mila Nikolova,et al.  Thresholding implied by truncated quadratic regularization , 2000, IEEE Trans. Signal Process..

[12]  J. Rakotoson,et al.  Ann.Inst.Fourier Grenoble , 2000 .

[13]  Mila Nikolova,et al.  Local Strong Homogeneity of a Regularized Estimator , 2000, SIAM J. Appl. Math..

[14]  P. Davies,et al.  Local Extremes, Runs, Strings and Multiresolution , 2001 .

[15]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[16]  C. Ballester,et al.  The Dirichlet Problem for the Total Variation Flow , 2001 .

[17]  Jesús Ildefonso Díaz Díaz,et al.  Some qualitative properties for the total variation flow , 2002 .

[18]  M. Novaga,et al.  The Total Variation Flow in RN , 2002 .

[19]  Thomas Brox,et al.  Equivalence Results for TV Diffusion and TV Regularisation , 2003, Scale-Space.

[20]  Lewis D. Griffin,et al.  Scale Space Methods in Computer Vision , 2003, Lecture Notes in Computer Science.

[21]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[22]  Joachim Weickert,et al.  Correspondences between Wavelet Shrinkage and Nonlinear Diffusion , 2003, Scale-Space.

[23]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[24]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[25]  Fuensanta Andreu Vaíllo,et al.  The total variation flow , 2003 .

[26]  Thomas Brox,et al.  On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs , 2004, SIAM J. Numer. Anal..

[27]  M. Nikolova A Variational Approach to Remove Outliers and Impulse Noise , 2004 .

[28]  Otmar Scherzer,et al.  Tube Methods for BV Regularization , 2003, Journal of Mathematical Imaging and Vision.

[29]  S. Osher,et al.  Decomposition of images by the anisotropic Rudin‐Osher‐Fatemi model , 2004 .

[30]  S. Osher,et al.  G-Norm Properties of Bounded Variation Regularization , 2004 .

[31]  Otmar Scherzer Taut-String Algorithm and Regularization Programs with G-Norm Data Fit , 2005, Journal of Mathematical Imaging and Vision.

[32]  Otmar Scherzer,et al.  Variational Methods on the Space of Functions of Bounded Hessian for Convexification and Denoising , 2005, Computing.

[33]  Otmar Scherzer,et al.  Denoising with higher order derivatives of bounded variation and an application to parameter estimation , 2007, Computing.