Size-dependent dissociation of carbon monoxide on cobalt nanoparticles.
暂无分享,去创建一个
Jinghua Guo | A. Alivisatos | G. Thornton | F. Besenbacher | Mahati Chintapalli | M. Salmeron | S. Carenco | F. Borondics | A. Tuxen | Peng Jiang | R. Pérez | C. Escudero | E. Pach | Brandon J. Beberwyck | C. Chuang | W. Pong | Ferenc Borondics | Sophie Carenco
[1] N. Kruse,et al. Hydrocarbon chain lengthening in catalytic CO hydrogenation: evidence for a CO-insertion mechanism. , 2012, Journal of the American Chemical Society.
[2] M. Rønning,et al. Fischer–Tropsch synthesis: An XAS/XRPD combined in situ study from catalyst activation to deactivation , 2012 .
[3] Im Ionel Ciobica,et al. Hydrogen-assisted CO dissociation on the Co(211) stepped surface , 2012 .
[4] J. Fierro,et al. Catalytic effects of ruthenium particle size on the Fischer–Tropsch Synthesis , 2011 .
[5] R. A. Santen,et al. CO dissociation on Ru and Co surfaces : the initial step in the Fischer-Tropsch synthesis , 2011 .
[6] Manos Mavrikakis,et al. Kinetically Relevant Steps and H2/D2 Isotope Effects in Fischer−Tropsch Synthesis on Fe and Co Catalysts , 2010 .
[7] Anders Holmen,et al. Understanding the effect of cobalt particle size on Fischer-Tropsch synthesis: surface species and mechanistic studies by SSITKA and kinetic isotope effect. , 2010, Langmuir : the ACS journal of surfaces and colloids.
[8] Manos Mavrikakis,et al. CO activation pathways and the mechanism of Fischer–Tropsch synthesis , 2010 .
[9] R. V. van Santen,et al. Hydrogen induced CO activation on open Ru and Co surfaces. , 2010, Physical chemistry chemical physics : PCCP.
[10] N. Kruse,et al. DRIFTS/MS Studies during Chemical Transients and SSITKA of the CO/H2 Reaction over Co-MgO Catalysts , 2010 .
[11] A. Jansen,et al. Direct versus hydrogen-assisted CO dissociation. , 2009, Journal of the American Chemical Society.
[12] P. Concepción,et al. Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts , 2009 .
[13] A. Cabot,et al. Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy. , 2009, The journal of physical chemistry. B.
[14] J. Bitter,et al. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis. , 2009, Journal of the American Chemical Society.
[15] A. Borgna,et al. Density Functional Theory Study of the CO Insertion Mechanism for Fischer−Tropsch Synthesis over Co Catalysts , 2009 .
[16] Burtron H. Davis,et al. Fischer–Tropsch Synthesis: Reaction mechanisms for iron catalysts , 2009 .
[17] J. Nørskov,et al. Structure Sensitivity of the Methanation Reaction: H2 induced CO dissociation on nickel surfaces , 2008 .
[18] Oliver R. Inderwildi,et al. Fischer−Tropsch Mechanism Revisited: Alternative Pathways for the Production of Higher Hydrocarbons from Synthesis Gas , 2008 .
[19] Freek Kapteijn,et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. , 2006, Journal of the American Chemical Society.
[20] B. Weckhuysen,et al. In Situ X-ray Absorption of Co/Mn/TiO2 Catalysts for Fischer−Tropsch Synthesis , 2004 .
[21] Hans Schulz,et al. Short history and present trends of Fischer–Tropsch synthesis , 1999 .
[22] G. Blyholder,et al. Hydrogen-assisted dissociation of CO on a catalyst surface , 1991 .
[23] Alexis T. Bell,et al. Catalytic Synthesis of Hydrocarbons over Group VIII Metals. A Discussion of the Reaction Mechanism , 1981 .
[24] H. Pichler,et al. Neuere Erkenntnisse auf dem Gebiet der Synthese von Kohlenwasserstoffen aus CO und H2 , 1970 .