Strong tractability of multivariate integration using quasi-Monte Carlo algorithms
暂无分享,去创建一个
[1] H. Niederreiter,et al. Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .
[2] Harald Niederreiter,et al. Implementation and tests of low-discrepancy sequences , 1992, TOMC.
[3] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[4] Henryk Wozniakowski,et al. Tractability and Strong Tractability of Linear Multivariate Problems , 1994, J. Complex..
[5] D. Hunter. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .
[6] Henryk Wozniakowski,et al. Intractability Results for Integration and Discrepancy , 2001, J. Complex..
[7] Joseph F. Traub,et al. Faster Valuation of Financial Derivatives , 1995 .
[8] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..
[9] Erich Novak,et al. High dimensional integration , 2000, Adv. Comput. Math..
[10] H. Wozniakowski. Efficiency of Quasi-Monte Carlo Algorithms for High Dimensional Integrals , 2000 .
[11] Fred J. Hickernell,et al. The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..
[12] Harald Niederreiter,et al. Introduction to finite fields and their applications: Preface , 1994 .
[13] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[14] Fred J. Hickernell,et al. Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..
[15] Henryk Wozniakowski,et al. Weighted Tensor Product Algorithms for Linear Multivariate Problems , 1999, J. Complex..
[16] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[17] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[18] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[19] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[20] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[21] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[22] Joseph F. Traub,et al. Complexity and information , 1999, Lezioni Lincee.
[23] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..