Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells

[1]  T. Arun,et al.  Carbon decorated octahedral shaped Fe3O4 and α-Fe2O3 magnetic hybrid nanomaterials for next generation supercapacitor applications , 2019, Applied Surface Science.

[2]  V. Chernenko,et al.  The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles , 2019, Beilstein journal of nanotechnology.

[3]  M. Soleymani,et al.  Optimal size for heating efficiency of superparamagnetic dextran-coated magnetite nanoparticles for application in magnetic fluid hyperthermia , 2018, Physica C: Superconductivity and its Applications.

[4]  Shupeng Zhang,et al.  Porous MnFe2O4-decorated PB nanocomposites: a new theranostic agent for boosted T1/T2 MRI-guided synergistic photothermal/magnetic hyperthermia , 2018, RSC advances.

[5]  Hongmei Sun,et al.  Synthesis of Gd-functionalized Fe3O4@polydopamine nanocomposites for T1/T2 dual-modal magnetic resonance imaging-guided photothermal therapy , 2018 .

[6]  T. Q. Dat STUDY ON INFLUENCE OF TEMPERATURE AND DURATION OF HYDROTHERMAL TREATMENT TO PROPERTIES OF NANO FERRITE NiFe2O4 MATERIALS , 2018 .

[7]  A. Alizadeh,et al.  Biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles in BALB/c mice , 2018, International journal of nanomedicine.

[8]  R. Ivkov,et al.  Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans , 2018, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[9]  Jung-tak Jang,et al.  Giant Magnetic Heat Induction of Magnesium‐Doped γ‐Fe2O3 Superparamagnetic Nanoparticles for Completely Killing Tumors , 2018, Advanced materials.

[10]  V. Lassalle,et al.  Fabrication of folic acid magnetic nanotheranostics: An insight on the formation mechanism, physicochemical properties and stability in simulated physiological media , 2018 .

[11]  Raja Das,et al.  Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size , 2018 .

[12]  Jyothi U. Menon,et al.  Dual-Drug Containing Core-Shell Nanoparticles for Lung Cancer Therapy , 2017, Scientific Reports.

[13]  Meysam Soleymani,et al.  Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. , 2017, Progress in biophysics and molecular biology.

[14]  K. Okuyama,et al.  Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles , 2017, Scientific Reports.

[15]  C. Ménager,et al.  Doxorubicin Intracellular Remote Release from Biocompatible Oligo(ethylene glycol) Methyl Ether Methacrylate-Based Magnetic Nanogels Triggered by Magnetic Hyperthermia. , 2017, ACS applied materials & interfaces.

[16]  A. Alizadeh,et al.  Tailoring La1-xSrxMnO3 (0.25 ≤x≤ 0.35) nanoparticles for self-regulating magnetic hyperthermia therapy: an in vivo study. , 2017, Journal of materials chemistry. B.

[17]  M. Soleymani,et al.  High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles. , 2017, Materials science & engineering. C, Materials for biological applications.

[18]  D. Cortés-Hernández,et al.  Synthesis, characterization and hemolysis studies of Zn(1−x)CaxFe2O4 ferrites synthesized by sol-gel for hyperthermia treatment applications , 2017 .

[19]  I. Hilger,et al.  Nanoparticle-based hyperthermia distinctly impacts production of ROS, expression of Ki-67, TOP2A, and TPX2, and induction of apoptosis in pancreatic cancer , 2017, International journal of nanomedicine.

[20]  Olivier Sandre,et al.  Tuning Sizes, Morphologies, and Magnetic Properties of Monocore Versus Multicore Iron Oxide Nanoparticles through the Controlled Addition of Water in the Polyol Synthesis. , 2017, Inorganic chemistry.

[21]  J. Ruso,et al.  Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia , 2016 .

[22]  N. D. Thorat,et al.  Multi-modal MR imaging and magnetic hyperthermia study of Gd doped Fe3O4 nanoparticles for integrative cancer therapy , 2016 .

[23]  Gennaro Bellizzi,et al.  Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head , 2016, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[24]  A. Alizadeh,et al.  MicroRNA-206, let-7a and microRNA-21 pathways involved in the anti-angiogenesis effects of the interval exercise training and hormone therapy in breast cancer. , 2016, Life sciences.

[25]  Gang Bao,et al.  The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. , 2016, Nanomedicine.

[26]  P. Guardia,et al.  CoxFe3–xO4 Nanocubes for Theranostic Applications: Effect of Cobalt Content and Particle Size , 2016 .

[27]  Preeti Kumari,et al.  Recent advances in polymeric micelles for anti-cancer drug delivery. , 2016, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[28]  A. Alizadeh,et al.  Thermosensitive polymer-coated La 0.73 Sr 0.27 MnO 3 nanoparticles: potential applications in cancer hyperthermia therapy and magnetically activated drug delivery systems , 2015 .

[29]  Rhythm R. Shah,et al.  Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. , 2015, Journal of magnetism and magnetic materials.

[30]  R. Ivkov,et al.  Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer , 2015, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[31]  V. Sankar,et al.  FeCo nanowires with enhanced heating powers and controllable dimensions for magnetic hyperthermia , 2015 .

[32]  R. Tan,et al.  Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power , 2014, 1407.2737.

[33]  P. Wu,et al.  Aptamer-functionalized gold nanoparticles as photoresponsive nanoplatform for co-drug delivery. , 2014, ACS applied materials & interfaces.

[34]  Sumit Arora,et al.  Synthesis, characterization, and evaluation of poly (D,L-lactide-co-glycolide)-based nanoformulation of miRNA-150: potential implications for pancreatic cancer therapy , 2014, International journal of nanomedicine.

[35]  H. Gu,et al.  Folic acid modified superparamagnetic iron oxide nanocomposites for targeted hepatic carcinoma MR imaging , 2014 .

[36]  M. Zamani,et al.  The protective and therapeutic effects of alpha-solanine on mice breast cancer. , 2013, European journal of pharmacology.

[37]  J. Hainfeld,et al.  Intravenous magnetic nanoparticle cancer hyperthermia , 2013, International journal of nanomedicine.

[38]  Qingming Ma,et al.  Preparation, characterization, and in vivo evaluation of doxorubicin loaded BSA nanoparticles with folic acid modified dextran surface. , 2013, International journal of pharmaceutics.

[39]  C. Chia,et al.  Synthesis of Fe3O4 nanocrystals using hydrothermal approach , 2012 .

[40]  K. Simeonidis,et al.  Size-Dependent Mechanisms in AC Magnetic Hyperthermia Response of Iron-Oxide Nanoparticles , 2012, IEEE Transactions on Magnetics.

[41]  Nguyen T. K. Thanh,et al.  Magnetic Nanoparticles : From Fabrication to Clinical Applications , 2012 .

[42]  Z. Chen,et al.  Magnetic Nanoparticle-Based Hyperthermia for Head & Neck Cancer in Mouse Models , 2012, Theranostics.

[43]  Sébastien Lachaize,et al.  Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study , 2011 .

[44]  Jian-feng Dong,et al.  Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. , 2011, Oncology reports.

[45]  Hu Li,et al.  Effect of magnetic fluid hyperthermia on lung cancer nodules in a murine model. , 2011, Oncology letters.

[46]  Shaobing Zhou,et al.  Target-specific cellular uptake of folate-decorated biodegradable polymer micelles. , 2011, The journal of physical chemistry. B.

[47]  Jinwoo Cheon,et al.  Exchange-coupled magnetic nanoparticles for efficient heat induction. , 2011, Nature nanotechnology.

[48]  Masahiro Hiraoka,et al.  Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer , 2010 .

[49]  R. Ma,et al.  Shape-Controlled Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanocubes , 2010 .

[50]  C. Chia,et al.  Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination , 2010 .

[51]  I. Baker,et al.  MAGNETIC NANOPARTICLE HYPERTHERMIA IN CANCER TREATMENT. , 2010, Nano LIFE.

[52]  Shouhu Xuan,et al.  Durable mesenchymal stem cell labelling by using polyhedral superparamagnetic iron oxide nanoparticles. , 2009, Chemistry.

[53]  L. Lacroix,et al.  Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes , 2009, 0907.4063.

[54]  V. Rotello,et al.  Protein-passivated Fe(3)O(4) nanoparticles: low toxicity and rapid heating for thermal therapy. , 2008, Journal of materials chemistry.

[55]  M. McHenry,et al.  Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy , 2008 .

[56]  S. Nomura,et al.  Inductive Heating of Mg Ferrite Powder in High-Water Content Phantoms Using AC Magnetic Field for Local Hyperthermia , 2007 .

[57]  Pallab Pradhan,et al.  Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. , 2007, Journal of biomedical materials research. Part B, Applied biomaterials.

[58]  S. Dutz,et al.  Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy , 2007 .

[59]  W. Weitschies,et al.  The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia , 2006 .

[60]  Roland Felix,et al.  The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma , 2006, Journal of Neuro-Oncology.

[61]  J. Park,et al.  Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. , 2005, Lab on a chip.

[62]  A. Jordan,et al.  Increase of the Specific Absorption Rate (SAR) by Magnetic Fractionation of Magnetic Fluids , 2003 .

[63]  P. Moroz,et al.  Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model , 2002, Journal of surgical oncology.

[64]  W. Kaiser,et al.  Physical limits of hyperthermia using magnetite fine particles , 1998 .

[65]  J. Ross,et al.  Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications , 1994, Cancer.

[66]  L. Alexander,et al.  X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition , 1974 .

[67]  Jung-tak Jang,et al.  Giant Magnetic Heat Induction of Magnesium-Doped γ-Fe2 O3 Superparamagnetic Nanoparticles for Completely Killing Tumors. , 2019, Advanced materials.

[68]  Xiaoping Zhou,et al.  decorated PB nanocomposites : a new theranostic agent for boosted T 1 / T 2 MRI-guided synergistic photothermal / magnetic hyperthermia † , 2018 .

[69]  K. Pirota,et al.  Magnetic hyperthermia in brick-like Ag@Fe3O4 core–shell nanoparticles , 2016 .

[70]  Shivayogi M Hugar,et al.  An In Vivo Study , 2015 .

[71]  R. Misra,et al.  On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. , 2008, Acta biomaterialia.

[72]  Moritz M. Reichvilser,et al.  A Combined Theoretical and Experimental Study , 2008 .

[73]  A. V. Sergeev,et al.  Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro , 2001 .

[74]  Dev P. Chakraborty,et al.  Usable Frequencies in Hyperthermia with Thermal Seeds , 1984, IEEE Transactions on Biomedical Engineering.

[75]  L. Alexander,et al.  X-Ray diffraction procedures for polycrystalline and amorphous materials , 1974 .

[76]  佐藤 実,et al.  Co x Fe 3-x O 4 粉末の合成条件と磁性 , 1962 .