Tool-Center-Point control of the KAI manipulator using constrained QP optimization

Abstract The KAI manipulator is a four joint mobile manipulator, which will be used within the German road clearance package to investigate improvised explosive devices and ordnance from within an armored vehicle. To improve handling of the manipulator, a Tool-Center-Point (TCP) control is implemented. By using constrained quadratic optimization (cQP) it is possible to allow for the control of the manipulator within three different operating spaces. The QP is formulated to account for constraints in the joint angular rates and TCP velocities, as well as additional velocity constraints, e.g. on the movement of the center of mass of the manipulator. The proposed algorithm is able to handle redundant as well as non redundant manipulator kinematics. By using an efficient QP solver the algorithm can be used within a real-time trajectory generation scheme. The performance of the algorithm is demonstrated using simulation results and validated by measurements of the TCP control.

[1]  Günter Schreiber,et al.  Solving the singularity problem of non-redundant manipulators by constraint optimization , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[2]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[3]  Leonid B. Freidovich,et al.  Trajectory planning and time-independent motion control for a kinematically redundant hydraulic manipulator , 2009, 2009 International Conference on Advanced Robotics.

[4]  Manfred Hiller,et al.  A Linear Optimization Approach to Inverse Kinematics of Redundant Robots with Respect to Manipulability , 2008 .

[5]  Günter Schreiber Steuerung für redundante Robotersysteme: Benutzer- und aufgabenorientierte Verwendung der Redundanz , 2004 .

[6]  Jun Wang,et al.  A dual neural network for constrained joint torque optimization of kinematically redundant manipulators , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Yunong Zhang Inverse-free computation for infinity-norm torque minimization of robot manipulators , 2006 .

[8]  R. Schwertassek,et al.  Dynamik flexibler Mehrkörpersysteme , 1999 .

[9]  Stephen P. Boyd,et al.  CVXGEN: a code generator for embedded convex optimization , 2011, Optimization and Engineering.

[10]  Manfred Hiller,et al.  Nonlinear Motion Control of Hydraulically Driven Large Redundant Manipulators , 1995 .

[11]  Chih-Jer Lin,et al.  Motion planning of redundant robots by perturbation method , 2004 .

[12]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[13]  Bruno Siciliano,et al.  Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator , 1994, IEEE Trans. Control. Syst. Technol..

[14]  Claudio Melchiorri,et al.  Trajectory Planning for Automatic Machines and Robots , 2010 .

[15]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[16]  Donald Goldfarb,et al.  A numerically stable dual method for solving strictly convex quadratic programs , 1983, Math. Program..

[17]  A. Shabana,et al.  Equivalence of the floating frame of reference approach and finite element formulations , 1998 .

[18]  G. Zorpette Countering IEDS , 2008, IEEE Spectrum.

[19]  Yunong Zhang,et al.  Repetitive Motion Planning and Control of Redundant Robot Manipulators , 2013 .

[20]  Ian R. Manchester,et al.  Identification and Control of a Hydraulic Forestry Crane , 2008 .

[21]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[22]  Yunong Zhang,et al.  Variable Joint-Velocity Limits of Redundant Robot Manipulators Handled by Quadratic Programming , 2013, IEEE/ASME Transactions on Mechatronics.

[23]  Fan-Tien Cheng,et al.  Efficient algorithm for resolving manipulator redundancy-the compact QP method , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[24]  Samuel R. Buss,et al.  Selectively Damped Least Squares for Inverse Kinematics , 2005, J. Graph. Tools.

[25]  G. Zorpette Re-engineering Afghanistan , 2011, IEEE Spectrum.

[26]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[27]  J Rennie,et al.  The social era of the web starts now , 2011, IEEE Spectrum.

[28]  Oskar Wallrapp,et al.  Standardization of flexible body modeling in multibody system codes , 1994 .

[29]  Valentina Colla,et al.  Kinematic Control of Robots With Joint Constraints , 1999 .

[30]  M. Schlemmer,et al.  Online Verfahren zur Bahnplanung kinematisch redundanter Manipulatoren , 2001 .

[31]  Antti J. Koivo Kinematics of Excavators (Backhoes) for Transferring Surface Material , 1994 .