Numerical solution of nonlinear Burgers' equation using high accuracy multi-quadric quasi-interpolation

In this paper, a numerical method is presented to approximate the solution to nonlinear Burgers' equation which is related to many scientific research topics. A numerical scheme by using high accuracy multi-quadric quasi-interpolation is presented in which a kind of multi-quadric quasi-interpolant is used to approximate the derivatives of the solution in spatial domain and finite difference is used to approximate the derivatives of the solution in temporal domain. The advantage of the scheme is that it is mesh free and in each time step only a multi-quadric quasi-interpolant is employed so that the algorithm is easy to implement. The numerical results of this scheme are also shown and compared with other numerical schemes.

[1]  Nam Mai-Duy,et al.  Approximation of function and its derivatives using radial basis function networks , 2003 .

[2]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[3]  L. Gardner,et al.  A collocation solution for Burgers' equation using cubic B-spline finite elements , 1992 .

[4]  Renhong Wang,et al.  Numerical solution of Burgers' equation by cubic B-spline quasi-interpolation , 2009, Appl. Math. Comput..

[5]  H. A. Hosham,et al.  Fourth-order finite difference method for solving Burgers' equation , 2005, Appl. Math. Comput..

[6]  Muhammad Aslam Noor,et al.  Some numerical methods for solving Burgers equation , 2011 .

[7]  Renhong Wang,et al.  Numerical solution of one-dimensional Sine-Gordon equation using high accuracy multiquadric quasi-interpolation , 2012, Appl. Math. Comput..

[8]  Bin Wang,et al.  High-order multi-symplectic schemes for the nonlinear Klein-Gordon equation , 2005, Appl. Math. Comput..

[9]  Wu Zong-min,et al.  A numerical method for one-dimensional nonlinear sine-Gordon equation using multiquadric quasi-interpolation , 2009 .

[10]  Min Xu,et al.  A novel numerical scheme for solving Burgers' equation , 2011, Appl. Math. Comput..

[11]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[12]  Rahmatjan. Yimin,et al.  Some new semi-implicit finite difference schemes for numerical solution of Burgers equation , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).

[13]  Abdulkadir Dogan,et al.  A Galerkin finite element approach to Burgers' equation , 2004, Appl. Math. Comput..

[14]  Alper Korkmaz,et al.  Shock wave simulations using Sinc Differential Quadrature Method , 2011 .

[15]  Bülent Saka,et al.  Quartic B-spline collocation method to the numerical solutions of the Burgers’ equation , 2007 .

[16]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[17]  Asai Asaithambi,et al.  Numerical solution of the Burgers' equation by automatic differentiation , 2010, Appl. Math. Comput..

[18]  Turgut Öziş,et al.  Numerical solution of Burgers' equation with factorized diagonal Padé approximation , 2011 .

[19]  Mohamed A. Ramadan,et al.  Application of the Non-Polynomial Spline Approach to the Solution of the Burgers' Equation , 2007 .

[20]  Seokchan Kim,et al.  Numerical solution of one-dimensional Burgers' equation using reproducing kernel function , 2008 .

[21]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[22]  Bamdad Hosseini,et al.  Solution of Burgers’ Equation Using a Local-RBF Meshless Method , 2011 .

[23]  Alper Korkmaz,et al.  Quartic B-spline Differential Quadrature Method , 2011 .

[24]  Wenyuan Liao,et al.  An implicit fourth-order compact finite difference scheme for one-dimensional Burgers' equation , 2008, Appl. Math. Comput..

[25]  Selçuk Kutluay,et al.  Numerical solution of Burgers' equation by quadratic B-spline finite elements , 2005, Appl. Math. Comput..

[26]  Leevan Ling,et al.  A univariate quasi-multiquadric interpolationwith better smoothness , 2004 .

[27]  Alaattin Esen,et al.  Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline finite element method , 2004 .

[28]  E. N. Aksan,et al.  Quadratic B-spline finite element method for numerical solution of the Burgers' equation , 2006, Appl. Math. Comput..

[29]  K. R. Raslan,et al.  A Collocation Solution For Burgers Equation Using Quadratic B-Spline Finite Elements , 2003, Int. J. Comput. Math..

[30]  Alper Korkmaz,et al.  Polynomial based differential quadrature method for numerical solution of nonlinear Burgers' equation , 2011, J. Frankl. Inst..

[31]  M. Morandi Cecchi,et al.  Space-time finite elements numerical solutions of Burgers Problems , 1997 .

[32]  Ren-Hong Wang,et al.  High accuracy multiquadric quasi-interpolation , 2011 .

[33]  R. C. Mittal,et al.  Numerical solutions of nonlinear Burgers' equation with modified cubic B-splines collocation method , 2012, Appl. Math. Comput..

[34]  S. Kutluay,et al.  Numerical solution of one-dimesional Burgers equation: explicit and exact-explicit finite difference methods , 1999 .

[35]  A. H. Khater,et al.  A Chebyshev spectral collocation method for solving Burgers'-type equations , 2008 .

[36]  M. J. D. Powell,et al.  Univariate multiquadric approximation: Quasi-interpolation to scattered data , 1992 .

[37]  Y. L. Wu,et al.  Development of RBF-DQ method for derivative approximation and its application to simulate natural convection in concentric annuli , 2002 .

[38]  Zongmin Wu,et al.  Shape preserving properties and convergence of univariate multiquadric quasi-interpolation , 1994 .