Assessment of Existing Steel Structures – Recommendations for Estimation of the Remaining Fatigue Life

Abstract In many countries and regions, the traffic infrastructure projects suffer from low funding. There budget is tight for new infrastructure building and, thus, the importance of inspection, maintenance and assessment of the existing traffic infrastructure increases. A new fatigue assessment guideline for the estimation of the remaining fatigue life of steel bridges has been written by technical committee 6 from ECCS [1] . It will be a useful tool for the complementation of bridge management systems, used commonly for condition assessment. This paper presents a guideline with a proposed fatigue assessment procedure for existing steel structures embedded in information about old materials and non-destructive testing methods for the evaluation of details. Particular attention is paid on remedial measures which are proposed for weak details and damages caused by fatigue. The developed fatigue assessment procedure can be applied to existing steel structures under cyclic loading in general, but the guideline concentrates on the existing traffic infrastructure made from old steel, because of the public importance. The proposed procedure summarizes, regroups and arranges the knowledge in the field of assessment on existing steel to be applied by practicing engineers. The procedure is a milestone in knowledge transfer from a state of scientific knowledge to state-of-the-art. To this end the presented JRC-ECCS-Joint Report has been published. In meantime the Technical Committee is working on a 2 nd edition of these recommendations. The keynote will also presents the new extensions of the recommendations e.g. dealing with the specifics in an assessment of existing crane structures or wind power plants or dealing with information on actual retrofitting techniques for orthotropic bridge decks.

[1]  Pedro Albrecht,et al.  RAPID CALCULATION OF STRESS INTENSITY FACTORS , 1977 .

[2]  Ernest Otto Doebelin,et al.  Measurement Systems Application and Design , 1966 .

[3]  K. G. McConnell,et al.  Instrumentation for engineering measurements , 1984 .

[4]  John M Hanson,et al.  EVALUATION OF FATIGUE LIFE AND RETROFITTING ON THE BENICIA-MARTINEZ BRIDGE , 1991 .

[5]  Rosemarie Helmerich,et al.  Forschungsbericht 271: Alte Stähle und Stahlkonstruktionen Materialuntersuchungen, Ermüdungsversuche an originalen Brückenträgern und Messungen von 1990 bis 2003 , 2006 .

[6]  Uwe Bremen Amélioration du comportement à la fatigue d'assemblages soudés , 1989 .

[7]  R. Möll Grundhafte Erneuerung des großen Palmenhauses im Palmengarten in Frankfurt am Main , 2000 .

[8]  Ian F. C. Smith,et al.  Measuring fatigue cracks in fillet welded joints , 1982 .

[9]  Stefan Drosner,et al.  Beitrag zur Berechnung der dynamischen Beanspruchung von Brücken unter Verkehrslasten , 1989 .

[10]  J W Fisher,et al.  AN INVESTIGATION OF THE ESTIMATED FATIGUE DAMAGE IN MEMBERS OF THE 380-FT MAIN SPAN, FRASER RIVER BRIDGE , 1976 .

[11]  Jan Ming Ko,et al.  Fatigue analysis and life prediction of bridges with structural health monitoring data — Part I: methodology and strategy , 2001 .

[12]  H. O. Fuchs,et al.  Metal fatigue in engineering , 2001 .

[13]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[14]  Andreas Taras,et al.  Development and Application of a Fatigue Class Catalogue for Riveted Bridge Components , 2010 .

[15]  Dennis R. Mertz,et al.  STEEL BRIDGE MEMBERS UNDER VARIABLE AMPLITUDE LONG LIFE FATIGUE LOADING , 1983 .

[16]  Richard Greiner,et al.  Statistisch begruendete Festigkeitskennwerte genieteter Bauteile - statische Festigkeit und Woehlerlinienkatalog / Statistically founded strength values of riveted members - static strength and fatigue life classification of constructional details , 2007 .

[17]  H. S. Wu,et al.  Assessment for integrity of structures containing defects , 1998 .

[18]  John W. Fisher,et al.  Evaluation and retrofit of floorbeam cracking on a tied arch bridge , 2005 .

[19]  James C. Newman,et al.  An empirical stress-intensity factor equation for the surface crack , 1981 .

[20]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[21]  A.C.W.M. Vrouwenvelder,et al.  TRAFFIC LOADS ON BRIDGES , 1993 .

[22]  Jan Ming Ko,et al.  Fatigue analysis and life prediction of bridges with structural health monitoring data — Part II: application , 2001 .

[23]  Christian Cremona,et al.  Guideline for Load and Resistance Assessment of Existing European Railway Bridges: Advices on the use of advanced methods , 2007 .

[24]  Z. Gong,et al.  ACOUSTIC EMISSION MONITORING OF STEEL RAILROAD BRIDGES , 1992 .

[25]  Alain Nussbaumer,et al.  RESISTANCE OF WELDED DETAILS UNDER VARIABLE AMPLITUDE LONG-LIFE FATIGUE LOADING , 1993 .

[26]  G Lueesse,et al.  REGEN-WIND-INDUZIERTE SCHWINGUNGSERSCHEINUNGEN AN DER ELBEBRUECKE DOEMITZ , 1996 .

[27]  Björn Åkesson,et al.  Fatigue Life of Riveted Railway Bridges , 1994 .

[28]  Alain Nussbaumer,et al.  Beurteilung bestehender Stahltragwerke: Empfehlungen zur Abschätzung der Restnutzungsdauer , 2008 .

[29]  Christoffer Astrup,et al.  Fatigue of Welded Structures , 2009 .

[30]  Oliver Hechler,et al.  Guidelines for monitoring of steel railway bridges Background document , 2008 .

[31]  J. E. Bower,et al.  Improving the performance of Amtrak's 95-year-old Susquehanna River Bridge (Ertüchtigungsmaßnahmen an der 95 Jahre alten Amtrak-Brücke über den Susquehanna) , 2002 .

[32]  F Moses,et al.  Fatigue evaluation procedures for steel bridges , 1987 .

[33]  Mladen Lukic Evaluation et maintenance probabilistes des assemblages soudes vis-a-vis de la fatigue et de la rupture application aux ponts mixtes , 1999 .

[34]  John W. Fisher,et al.  HOAN BRIDGE BRITTLE FRACTURE AND RETROFIT DESIGN , 2003 .