Cell transplantation in Parkinson's disease: how can we make it work?

Previous open-label clinical trials have provided proof of principle that intrastriatal transplants of fetal dopaminergic neurons can induce substantial and long-lasting functional benefits in patients with Parkinson's disease. However, in two recent NIH-sponsored double-blind trials, functional improvements were only marginal and the primary endpoints were not met. Severe off-phase dyskinesias were observed in a significant proportion of the transplanted patients, raising doubts about the viability of the cell-transplantation approach. Here, we discuss the problems raised by the NIH-sponsored trials and point to several shortcomings that might explain the overall poor outcome, and we identify several crucial issues that remain to be resolved to develop cell replacement into an effective and safe therapy.

[1]  A. Hudspeth,et al.  Clustering of Ca2+ channels and Ca(2+)-activated K+ channels at fluorescently labeled presynaptic active zones of hair cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M A Freed,et al.  Parallel Cone Bipolar Pathways to a Ganglion Cell Use Different Rates and Amplitudes of Quantal Excitation , 2000, The Journal of Neuroscience.

[3]  R. Heidelberger ATP Is Required at an Early Step in Compensatory Endocytosis in Synaptic Terminals , 2001, The Journal of Neuroscience.

[4]  O. Lindvall,et al.  Clinical observations after neural transplantation in Parkinson's disease. , 2000, Progress in brain research.

[5]  N. Vardi,et al.  Coordinated multivesicular release at a mammalian ribbon synapse , 2004, Nature Neuroscience.

[6]  J. Sahel,et al.  GABAC Receptors Are Localized with Microtubule-Associated Protein 1B in Mammalian Cone Photoreceptors , 2000, The Journal of Neuroscience.

[7]  A. Björklund Dopaminergic transplants in experimental parkinsonism: cellular mechanisms of graft-induced functional recovery , 1992, Current Opinion in Neurobiology.

[8]  John L. Hudson,et al.  Allogeneic grafts of fetal dopamine neurons: immunological reactions following active and adoptive immunizations , 1995, Brain Research.

[9]  J F Ashmore,et al.  An analysis of transmission from cones to hyperpolarizing bipolar cells in the retina of the turtle. , 1983, The Journal of physiology.

[10]  E. Raviola,et al.  Rod cells dissociated from mature salamander retina: ultrastructure and uptake of horseradish peroxidase , 1985, The Journal of cell biology.

[11]  E. Anderson Hudson et al. , 1977 .

[12]  G. Matthews,et al.  Ultrafast Exocytosis Elicited by Calcium Current in Synaptic Terminals of Retinal Bipolar Neurons , 1996, Neuron.

[13]  R. Heidelberger Adenosine Triphosphate and the Late Steps in Calcium-dependent Exocytosis at a Ribbon Synapse , 1998, The Journal of general physiology.

[14]  Stanley Fahn,et al.  Dyskinesia after fetal cell transplantation for parkinsonism: A PET study , 2002, Annals of neurology.

[15]  S. DeKosky,et al.  Fetal grafting for Parkinson's disease: expression of immune markers in two patients with functional fetal nigral implants. , 1997, Cell transplantation.

[16]  Thomas C. Südhof,et al.  Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion , 1997, Nature.

[17]  M H Ellisman,et al.  Synaptic Vesicle Populations in Saccular Hair Cells Reconstructed by Electron Tomography , 1999, The Journal of Neuroscience.

[18]  M. Laruelle,et al.  Dopaminergic Receptor Function Defined by Studying Genetically Altered Mice , 2003 .

[19]  A. Björklund,et al.  Intranigral Transplants of GABA-Rich Striatal Tissue Induce Behavioral Recovery in the Rat Parkinson Model and Promote the Effects Obtained by Intrastriatal Dopaminergic Transplants , 1999, Experimental Neurology.

[20]  W. Almers,et al.  Imaging Calcium Entry Sites and Ribbon Structures in Two Presynaptic Cells , 2003, The Journal of Neuroscience.

[21]  Y. Ishizuka,et al.  Serotonergic activity in the rat striatum after intrastriatal transplantation of fetal nigra as measured by microdialysis , 1998, Brain Research.

[22]  H. Wässle,et al.  The Synaptic Architecture of AMPA Receptors at the Cone Pedicle of the Primate Retina , 2001, The Journal of Neuroscience.

[23]  Heinz Wässle,et al.  The Cone Pedicle, a Complex Synapse in the Retina , 2000, Neuron.

[24]  David J. Calkins,et al.  M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses , 1994, Nature.

[25]  A. Berntson,et al.  The unitary event amplitude of mouse retinal on-cone bipolar cells , 2003, Visual Neuroscience.

[26]  Björn Gustavii,et al.  Short‐ and long‐term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson's disease , 1997, Annals of neurology.

[27]  S. Schein,et al.  How Müller glial cells in macaque fovea coat and isolate the synaptic terminals of cone photoreceptors , 2002, The Journal of comparative neurology.

[28]  Mark C. W. van Rossum,et al.  Noise removal at the rod synapse of mammalian retina , 1998, Visual Neuroscience.

[29]  P. Danielson,et al.  Embryonic mesencephalic grafts increase levodopa‐induced forelimb hyperkinesia in parkinsonian rats , 2003, Movement disorders : official journal of the Movement Disorder Society.

[30]  Peter Sterling,et al.  Roles of ATP in depletion and replenishment of the releasable pool of synaptic vesicles. , 2002, Journal of neurophysiology.

[31]  R H Masland,et al.  Light-evoked responses of bipolar cells in a mammalian retina. , 2000, Journal of neurophysiology.

[32]  J. Siegel,et al.  Spontaneous synaptic potentials from afferent terminals in the guinea pig cochlea , 1992, Hearing Research.

[33]  P. Sterling,et al.  Streamlined Synaptic Vesicle Cycle in Cone Photoreceptor Terminals , 2004, Neuron.

[34]  J. Herman,et al.  Dopaminergic neural grafts after fifteen years: results and perspectives , 1994, Progress in Neurobiology.

[35]  S. DeVries,et al.  Exocytosed Protons Feedback to Suppress the Ca2+ Current in Mammalian Cone Photoreceptors , 2001, Neuron.

[36]  C. Olanow,et al.  Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. , 1999, Archives of neurology.

[37]  P. Sterling,et al.  Synaptic Ribbon Conveyor Belt or Safety Belt? , 2003, Neuron.

[38]  Kareem M. Ahmad,et al.  Two ribbon synaptic units in rod photoreceptors of macaque, human, and cat , 2003, The Journal of comparative neurology.

[39]  D J Brooks,et al.  Delayed recovery of movement‐related cortical function in Parkinson's disease after striatal dopaminergic grafts , 2000, Annals of neurology.

[40]  C. Marsden,et al.  Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson's disease. , 2000, Brain : a journal of neurology.

[41]  John L. Hudson,et al.  Microglial Cell Responses to Fetal Ventral Mesencephalic Tissue Grafting and to Active and Adoptive Immunizations , 1996, Experimental Neurology.

[42]  S. Dunnett,et al.  Serotonin hyperinnervation after foetal nigra or raphe transplantation in the neostriatum of adult rats , 1991, Neuroscience Letters.

[43]  P. Fuchs,et al.  Kinetic analysis of barium currents in chick cochlear hair cells. , 1995, Biophysical journal.

[44]  P. Fuchs,et al.  Release Sites and Calcium Channels in Hair Cells of the Chick’s Cochlea , 1997, The Journal of Neuroscience.

[45]  T. Suda,et al.  Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. , 1999, Neuroreport.

[46]  C. Marsden,et al.  Sequential bilateral transplantation in Parkinson's disease: effects of the second graft. , 1999, Brain : a journal of neurology.

[47]  L. Lagnado,et al.  Real-Time Measurement of Exocytosis and Endocytosis Using Interference of Light , 2003, Neuron.

[48]  R. Heidelberger,et al.  Differential distribution of synaptotagmin immunoreactivity among synapses in the goldfish, salamander, and mouse retina. , 2003, Visual neuroscience.

[49]  P. Fuchs,et al.  The afferent synapse of cochlear hair cells , 2003, Current Opinion in Neurobiology.

[50]  P. Brundin,et al.  Transplantation in Parkinson's disease: The future looks bright. , 2006, Advances in experimental medicine and biology.

[51]  F. Schmitz,et al.  Localization of dystrophin and β-dystroglycan in bovine retinal photoreceptor processes extending into the postsynaptic dendritic complex , 1997, Histochemistry and Cell Biology.

[52]  G. Buchsbaum,et al.  Mammalian rod terminal: Architecture of a binary synapse , 1995, Neuron.

[53]  G. Matthews,et al.  Endocytosis and Vesicle Recycling at a Ribbon Synapse , 2003, The Journal of Neuroscience.

[54]  T. Parsons,et al.  Large releasable pool of synaptic vesicles in chick cochlear hair cells. , 2004, Journal of neurophysiology.

[55]  R. Wong,et al.  Distinct Ionotropic GABA Receptors Mediate Presynaptic and Postsynaptic Inhibition in Retinal Bipolar Cells , 2000, The Journal of Neuroscience.

[56]  H. Wässle,et al.  The Cone Pedicle, the First Synapse in the Retina , 2003 .

[57]  H. Wässle,et al.  Synaptic distribution of ionotropic glutamate receptors in the inner plexiform layer of the primate retina , 2002, The Journal of comparative neurology.

[58]  H. Wässle,et al.  Immunocytochemical analysis of the mouse retina , 2000, The Journal of comparative neurology.

[59]  J Q Trojanowski,et al.  Transplantation of embryonic dopamine neurons for severe Parkinson's disease. , 2001, The New England journal of medicine.

[60]  H. von Gersdorff,et al.  Structure suggests function: the case for synaptic ribbons as exocytotic nanomachines , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[61]  J. Usukura,et al.  Ultrastructure of the synaptic ribbons in photoreceptor cells of Rana catesbeiana revealed by freeze-etching and freeze-substitution , 1987, Cell and Tissue Research.

[62]  Michael G. Sneary Auditory receptor of the red‐eared turtle: II. Afferent and efferent synapses and innervation patterns , 1988, The Journal of comparative neurology.

[63]  R. Spessert,et al.  Morphometry of pineal synaptic ribbon profile numbers after cytochalasin D treatment. , 1996, Acta anatomica.

[64]  T. Parsons,et al.  Evidence That Rapid Vesicle Replenishment of the Synaptic Ribbon Mediates Recovery from Short-Term Adaptation at the Hair Cell Afferent Synapse , 2004, Journal of the Association for Research in Otolaryngology.

[65]  P Sterling,et al.  Localization of mGluR6 to dendrites of ON bipolar cells in primate retina , 2000, The Journal of comparative neurology.

[66]  R. L. Rogers,et al.  Outcome Following Intrastriatal Fetal Mesencephalic Grafts for Parkinson's Patients Is Directly Related to the Volume of Grafted Tissue , 1997, Experimental Neurology.

[67]  G. Matthews,et al.  Depletion and Replenishment of Vesicle Pools at a Ribbon-Type Synaptic Terminal , 1997, The Journal of Neuroscience.

[68]  N. Quinn,et al.  Disorders of movement : clinical, pharmacological and physiological aspects , 1989 .

[69]  B. Schnapp,et al.  The Kinesin Motor KIF3A Is a Component of the Presynaptic Ribbon in Vertebrate Photoreceptors , 1999, The Journal of Neuroscience.

[70]  David J. Calkins,et al.  Microcircuitry and Mosaic of a Blue–Yellow Ganglion Cell in the Primate Retina , 1998, The Journal of Neuroscience.

[71]  G. Matthews,et al.  Visualizing Synaptic Ribbons in the Living Cell , 2004, The Journal of Neuroscience.

[72]  Thomas Voets,et al.  Calcium Dependence of Exocytosis and Endocytosis at the Cochlear Inner Hair Cell Afferent Synapse , 2001, Neuron.

[73]  A. Barbeau Disorders of movement. , 1960, Lancet.

[74]  S. DeVries,et al.  Bipolar Cells Use Kainate and AMPA Receptors to Filter Visual Information into Separate Channels , 2000, Neuron.

[75]  A. Dagher,et al.  Enhancement of survival of stored dopaminergic cells and promotion of graft survival by exposure of human fetal nigral tissue to glial cell line--derived neurotrophic factor in patients with Parkinson's disease. Report of two cases and technical considerations. , 2000, Journal of neurosurgery.

[76]  P. Sterling,et al.  Foveal Cones form Basal as well as Invaginating Junctions with Diffuse ON Bipolar Cells , 1996, Vision Research.

[77]  David Zenisek,et al.  A Membrane Marker Leaves Synaptic Vesicles in Milliseconds after Exocytosis in Retinal Bipolar Cells , 2002, Neuron.

[78]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[79]  R. Broadwell,et al.  Contributions of Donor and Host Blood Vessels in CNS Allografts , 1996, Experimental Neurology.

[80]  C. Sortwell,et al.  Diminished Survival of Mesencephalic Dopamine Neurons Grafted into Aged Hosts Occurs during the Immediate Postgrafting Interval , 2001, Experimental Neurology.

[81]  M. Liberman Single-neuron labeling in the cat auditory nerve. , 1982, Science.

[82]  A. Bjo¨rklund,et al.  Sequential intrastriatal grafting of allogeneic embryonic dopamine-rich neuronal tissue in adult rats: Will the second graft be rejected? , 1993, Neuroscience.

[83]  A. Björklund,et al.  Dyskinesias following neural transplantation in Parkinson's disease , 2002, Nature Neuroscience.

[84]  F. Werblin,et al.  Voltage-dependent uptake is a major determinant of glutamate concentration at the cone synapse: an analytical study. , 1998, Journal of neurophysiology.

[85]  T. Südhof,et al.  RIBEYE, a Component of Synaptic Ribbons A Protein's Journey through Evolution Provides Insight into Synaptic Ribbon Function , 2000, Neuron.

[86]  P Sterling,et al.  Demonstration of cell types among cone bipolar neurons of cat retina. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[87]  G Buchsbaum,et al.  Transmitter concentration at a three-dimensional synapse. , 1998, Journal of neurophysiology.

[88]  P. Sterling,et al.  Architecture of rod and cone circuits to the on-beta ganglion cell , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[89]  F. Rieke,et al.  Nonlinear Signal Transfer from Mouse Rods to Bipolar Cells and Implications for Visual Sensitivity , 2002, Neuron.

[90]  F. Werblin,et al.  A glutamate-elicited chloride current with transporter-like properties in rod photoreceptors of the tiger salamander , 1996, Visual Neuroscience.

[91]  H. Wässle,et al.  Differential expression of the presynaptic cytomatrix protein bassoon among ribbon synapses in the mammalian retina , 1999, The European journal of neuroscience.

[92]  John L. Hudson,et al.  Allogeneic grafts of fetal dopamine neurons: Behavioral indices of immunological interactions , 1994, Neuroscience Letters.

[93]  G. Matthews,et al.  Evidence That Vesicles on the Synaptic Ribbon of Retinal Bipolar Neurons Can Be Rapidly Released , 1996, Neuron.

[94]  Ornella Rimoldi,et al.  Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient , 1999, Nature Neuroscience.

[95]  B. Boycott,et al.  The cone synapses of cone bipolar cells of primate retina , 1997, Journal of neurocytology.

[96]  A. Björklund,et al.  Transplantation in the rat model of Parkinson's disease: ectopic versus homotopic graft placement. , 2000, Progress in brain research.

[97]  M. Matsunaga,et al.  Activation of 5‐HT1A but not 5‐HT1B receptors attenuates an increase in extracellular dopamine derived from exogenously administered l‐DOPA in the striatum with nigrostriatal denervation , 2001, Journal of neurochemistry.

[98]  K. Rábl,et al.  A Highly Ca2+-Sensitive Pool of Vesicles Contributes to Linearity at the Rod Photoreceptor Ribbon Synapse , 2004, Neuron.

[99]  Y. Agid,et al.  Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease , 1983, Brain Research.

[100]  P. Brundin,et al.  Rat Intrastriatal Neural Allografts Challenged with Skin Allografts at Different Time Points , 1997, Experimental Neurology.

[101]  J. Friedman,et al.  The placebo response in Parkinson's disease. Parkinson Study Group. , 1999, Clinical neuropharmacology.

[102]  Mark Ellisman,et al.  Depolarization Redistributes Synaptic Membrane and Creates a Gradient of Vesicles on the Synaptic Body at a Ribbon Synapse , 2002, Neuron.

[103]  A. Björklund,et al.  Growth and Functional Efficacy of Intrastriatal Nigral Transplants Depend on the Extent of Nigrostriatal Degeneration , 2001, The Journal of Neuroscience.

[104]  C. Sortwell,et al.  Diminished Viability, Growth, and Behavioral Efficacy of Fetal Dopamine Neuron Grafts in Aging Rats with Long-Term Dopamine Depletion: An Argument for Neurotrophic Supplementation , 1999, The Journal of Neuroscience.

[105]  L. Lagnado,et al.  Calcium and Protein Kinase C Regulate the Actin Cytoskeleton in the Synaptic Terminal of Retinal Bipolar Cells , 1998, The Journal of cell biology.

[106]  Josef Ammermüller,et al.  The Presynaptic Active Zone Protein Bassoon Is Essential for Photoreceptor Ribbon Synapse Formation in the Retina , 2003, Neuron.

[107]  A. Björklund,et al.  Cell therapy in Parkinson's disease – stop or go? , 2001, Nature Reviews Neuroscience.

[108]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[109]  Leon Lagnado,et al.  Continuous Vesicle Cycling in the Synaptic Terminal of Retinal Bipolar Cells , 1996, Neuron.

[110]  I. Lasarzik,et al.  Mouse photoreceptor synaptic ribbons lose and regain material in response to illumination changes , 2004, The European journal of neuroscience.

[111]  M. Tachibana,et al.  Submillisecond Kinetics of Glutamate Release from a Sensory Synapse , 1998, Neuron.

[112]  T. Sejnowski,et al.  A freeze-fracture study of the skate electro receptor , 1982 .

[113]  P. Brundin,et al.  Cell Survival and Clinical Outcome Following Intrastriatal Transplantation in Parkinson Disease , 2001, Journal of neuropathology and experimental neurology.

[114]  F. Schmitz,et al.  Purification of Synaptic Ribbons, Structural Components of the Photoreceptor Active Zone Complex , 1996, The Journal of Neuroscience.

[115]  T. Moser,et al.  Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[116]  D. Zenisek,et al.  Transport, capture and exocytosis of single synaptic vesicles at active zones , 2000, Nature.

[117]  C. Marsden,et al.  Serotonergic sprouting in the neostriatum after intrastriatal transplantation of fetal ventral mesencephalon , 1991, Brain Research.

[118]  G. Matthews,et al.  Electrophysiology of synaptic vesicle cycling. , 1999, Annual review of physiology.

[119]  H. Ueda,et al.  Dystrophin localization at presynapse in rat retina revealed by immunoelectron microscopy. , 1995, Investigative ophthalmology & visual science.

[120]  A. Stoessl,et al.  The placebo effect in Parkinson's disease , 2002, Trends in Neurosciences.

[121]  G. Matthews,et al.  Rapid calcium-current kinetics in synaptic terminals of goldfish retinal bipolar neurons , 1998, Visual Neuroscience.

[122]  M. Liberman,et al.  Afferent and efferent innervation of the cat cochlea: Quantitative analysis with light and electron microscopy , 1990, The Journal of comparative neurology.

[123]  Heinz Wässle,et al.  Localization of kainate receptors at the cone pedicles of the primate retina , 2001, The Journal of comparative neurology.

[124]  E. A. Schwartz,et al.  Continuous and Transient Vesicle Cycling at a Ribbon Synapse , 1998, The Journal of Neuroscience.

[125]  Vesna Sossi,et al.  A double‐blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease , 2003, Annals of neurology.

[126]  Paul A. Fuchs,et al.  Transmitter release at the hair cell ribbon synapse , 2002, Nature Neuroscience.

[127]  G. Awatramani,et al.  Intensity-Dependent, Rapid Activation of Presynaptic Metabotropic Glutamate Receptors at a Central Synapse , 2001, The Journal of Neuroscience.

[128]  J. Walrond,et al.  Structure of axon terminals and active zones at synapses on lizard twitch and tonic muscle fibers , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[129]  C. Hübner,et al.  A cysteine 3340 substitution in the dystroglycan-binding domain of dystrophin associated with Duchenne muscular dystrophy, mental retardation and absence of the ERG b-wave. , 1996, Human molecular genetics.

[130]  L. Lagnado,et al.  Exocytosis at the Ribbon Synapse of Retinal Bipolar Cells Studied in Patches of Presynaptic Membrane , 2003, The Journal of Neuroscience.

[131]  S. Laughlin,et al.  The rate of information transfer at graded-potential synapses , 1996, Nature.

[132]  R. Broadwell,et al.  Angiogenesis and the blood-brain barrier in solid and dissociated cell grafts within the CNS. , 1990, Progress in brain research.

[133]  L. Lagnado,et al.  High Mobility of Vesicles Supports Continuous Exocytosis at a Ribbon Synapse , 2004, Current Biology.

[134]  Peter Sterling,et al.  Timing of Quantal Release from the Retinal Bipolar Terminal Is Regulated by a Feedback Circuit , 2003, Neuron.

[135]  M Kamermans,et al.  Hemichannel-Mediated Inhibition in the Outer Retina , 2001, Science.

[136]  V. Dhawan,et al.  Blinded positron emission tomography study of dopamine cell implantation for Parkinson's disease , 2001, Annals of neurology.

[137]  P. Greengard,et al.  Synapsins in the vertebrate retina: Absence from ribbon synapses and heterogeneous distribution among conventional synapses , 1990, Neuron.

[138]  P R Sanberg,et al.  Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. , 1995, The New England journal of medicine.

[139]  M A Freed,et al.  Rate of quantal excitation to a retinal ganglion cell evoked by sensory input. , 2000, Journal of neurophysiology.

[140]  P Sterling,et al.  Microcircuitry of bipolar cells in cat retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[141]  Court Hull,et al.  Synaptic Cleft Acidification and Modulation of Short-Term Depression by Exocytosed Protons in Retinal Bipolar Cells , 2003, The Journal of Neuroscience.

[142]  R. S. St Jules,et al.  L‐type calcium channels in the photoreceptor ribbon synapse: Localization and role in plasticity , 1999, The Journal of comparative neurology.

[143]  E. A. Schwartz,et al.  Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina , 1999, Nature.

[144]  Y. Samson,et al.  Transplantation in Parkinson's disease: PET changes correlate with the amount of grafted tissue , 2003, Movement disorders : official journal of the Movement Disorder Society.

[145]  P. Sterling,et al.  Microcircuits for Night Vision in Mouse Retina , 2001, The Journal of Neuroscience.