Electrophysiological analysis of fly retina. I: Comparative properties of R1-6 and R 7 and 8

Summary1.Intracellular recordings have been made from the photoreceptor classes R1–6, R 7, and R 8 in the flies,Calliphora (wild) andMusca (white).2.The half width of the angular sensitivity function (Δρ) inCalliphora R1–6 varies between 1.5° in the fovea and 3° in the lateral eye regions (Fig. 1). Light adaptation narrows these values by 20%. Both R 7 and R 8 haveΔρ values narrower than in R1–6, averaging 1.3° in foveal regions. InMusca (white)Δρ in R1–6=2.3° and in R7/8=1.5° (both values for foveal regions).3.The presence of an adapting light of sufficient intensity to activate the pupil mechanism shifts the 490 nm peak of spectral sensitivity in R1–6 towards shorter wavelengths by 40–50 nm inCalliphora but not in the pupilless mutant, white, ofMusca (Fig. 2). The shift is independent of photopigment equilibria and has a time course similar to that of the pupil closure mechanism (Fig. 3).4.There are two spectral classes of R7. Both have a single peak of sensitivity in the range 340–360 nm, but one is purely ultra-violet (UV) sensitive, having less than 10% sensitivity beyond 400 nm, whilst the other has a long tail of sensitivity extending to 500 nm. The majority of R 8 cells have a major peak of sensitivity at around 540 nm (Fig. 4).5.Polarisation sensitivity (PS) inCalliphora R1–6 averages 2.0 when measured in the green, and is not significantly affected by light-adaptation. InMusca R1–6, PS averages 1.9. In R7, PS is similar inCalliphora (average 2.2), but reaches values of up to 6 inMusca. PS could not always be detected in R8 but values of up to 3.5 have been recorded inCalliphora.6.Absolute sensitivities measured from the quantal flux required to generate a 50% maximum response using axial light of peak wavelength (APS50) are higher in R 7 and R 8 due to the higher voltage gain per quantum (Table 2).7.All receptor classes light adapt in a similar manner and continue responding to increments of intensity under the brightest adapting regimes used.8.These new results from identified receptors lead to a reappraisal of the possible roles of R1–6 and R 7 and 8 in optomotor responses elicited under different regimes of test pattern wavelength and intensity.

[1]  Werner Reichardt,et al.  Auslösung von Elementarprozessen durch einzelne Lichtquanten im Fliegenauge , 1968, Kybernetik.

[2]  R. Schümperli Evidence for colour vision inDrosophila melanogaster through spontaneous phototactic choice behaviour , 1973, Journal of Comparative Physiology A.

[3]  N. Franceschini,et al.  Photostable pigments within the membrane of photoreceptors and their possible role , 1977, Biophysics of structure and mechanism.

[4]  D. G. Stavenga,et al.  Rhodopsin Processes and the Function of the Pupil Mechanism in Flies , 1973 .

[5]  Hendrik Eckert,et al.  Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L , 1973, Kybernetik.

[6]  Dietrich Burkhardt,et al.  Visual field of single retinula cells and interommatidial inclination in the compound eye of the blowfly Calliphora erythrocephala , 1964, Zeitschrift für vergleichende Physiologie.

[7]  Marianne Drrscheidt-Kfer Die Empfindlichkeit einzelner Photorezeptoren im Komplexauge vonCalliphora erythrocephala@@@The sensitivity of single visual receptors in the compound eye of the blowflyCalliphora erythrocephala , 1972 .

[8]  Active and Passive Axonal Propagation of Non-Spike Signals in the Retina of Calliphora , 2022 .

[9]  F. Zettler,et al.  Electrophysiological-histological studies on some functional properties of visual cells and second order neurons of an insect retina , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[10]  P. Lillywhite,et al.  Single photon signals and transduction in an insect eye , 2004, Journal of comparative physiology.

[11]  W Reichardt,et al.  The insect eye as a model for analysis of uptake, transduction, and processing of optical data in the nervous system , 1969 .

[12]  Simon B. Laughlin,et al.  The sensitivities of dragonfly photoreceptors and the voltage gain of transduction , 2004, Journal of comparative physiology.

[13]  Gilbert D. McCann,et al.  Spectral and Polarization Sensitivity of the Dipteran Visual System , 1972, The Journal of general physiology.

[14]  G. Horridge,et al.  Fly photoreceptors I. Physical separation of two visual pigments in Calliphora retinula cells 1-6 , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[16]  R. Hardie Electrophysiological Properties of R7 and R8 in Dipteran Retina , 1977 .

[17]  V. Braitenberg Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.

[18]  U. Smola,et al.  A single-peaked UV-receptor in the eye ofCalliphora erythrocephala , 2004, Journal of comparative physiology.

[19]  W. Stark,et al.  Specific receptor input into spectral preference inDrosophila , 2004, Journal of comparative physiology.

[20]  H. Langer Properties and Functions of Screening Pigments in Insect Eyes , 1975 .

[21]  George Adrian Horridge,et al.  Anatomy of the Regional Differences in the Eye of the Mantis Ciulfina , 1979 .

[22]  A. Snyder Polarization sensitivity of individual retinula cells , 1973, Journal of comparative physiology.

[23]  D. Vowles The receptive fields of cells in the retina of the housefly (Musca domestica) , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  F. Werblin,et al.  Control of Retinal Sensitivity , 1974, The Journal of general physiology.

[25]  W. Reichardt,et al.  The quantal content of optomotor stimuli and the electrical responses of receptors in the compound eye of the fly Musca , 1969, Kybernetik.

[26]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[27]  K. Kirschfeld,et al.  Optische Eigenschaften der Ommatidien im Komplexauge von Musca , 1968, Kybernetik.

[28]  S. Wada Ein spezieller Rhabdomerentyp im Fliegenauge , 1971, Experientia.

[29]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[30]  J. Scholes The electrical responses of the retinal receptors and the lamina in the visual system of the fly musca , 1969, Kybernetik.

[31]  B. Thorell,et al.  Microspectrophotometry of single rhabdomeres in the insect eye. , 1966, Experimental cell research.

[32]  W. Harris,et al.  Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster , 1976, The Journal of physiology.

[33]  N. Franceschini,et al.  Pupil and Pseudopupil in the Compound Eye of Drosophila , 1972 .

[34]  J. Moring,et al.  Spectral and Polarization Sensitivity of Identified Retinal Cells of the Fly , 1976 .

[35]  N. Franceschini,et al.  Electrophysiological analysis of fly retina , 1979, Journal of comparative physiology.

[36]  G. Seitz,et al.  Der Strahlengang im Appositionsauge von Calliphora erythrocephala (Meig.) , 1968, Zeitschrift für vergleichende Physiologie.

[37]  G. Horridge The Compound eye and vision of insects , 1975 .

[38]  Roger C. Hardie,et al.  Fly photoreceptors. III. Angular sensitivity as a function of wavelength and the limits of resolution , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[39]  Roger C. Hardie,et al.  Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.

[40]  Allan W. Snyder,et al.  Acuity of compound eyes: Physical limitations and design , 2004, Journal of comparative physiology.

[41]  A. Snyder,et al.  The Relationship between Visual Acuity and Illumination in the Fly, Lucilia sericata , 1978, Zeitschrift fur Naturforschung. Section C, Biosciences.

[42]  F. Zettler,et al.  Active and passive axonal propagation of non-spike signals in the retina ofCalliphora , 1973, Journal of comparative physiology.

[43]  D. Stavenga,et al.  Organization of visual axes in the compound eye of the flyMusca domestica L. and behavioural consequences , 1975, Journal of comparative physiology.

[44]  H. Autrum,et al.  Die Sehzellen der Insekten als Analysatoren für Polarisiertes Licht , 2004, Zeitschrift für vergleichende Physiologie.

[45]  G. Horridge,et al.  Visual pigment spectra from sensitivity measurements after chromatic adaptation of single dronefly retinula cells , 1977, Journal of comparative physiology.

[46]  N. Franceschini,et al.  Le contrôle automatique du flux lumineux dans l'oeil composé des Diptères , 1976, Biological Cybernetics.

[47]  H. Eckert Die spektrale Empfindlichkeit des Komplexauges von Musca (Bestimmung aus Messungen der optomotorischen reaktion) , 1971, Kybernetik.

[48]  K. Kirschfeld,et al.  Lateral Inhibition in the Com pound Eye of the Fly, Musca , 1974, Zeitschrift fur Naturforschung. Section C, Biosciences.