Optically detected magnetic resonance via the magnetic circular dichroism of absorption of cerium impurities in bulk paramagnetic terbium gallium garnet

The paramagnetic resonance of dilute ions in the bulk paramagnetic host is separated from the host response by means of optically detected magnetic resonance (ODMR) using the magnetic circular dichroism (MCD) of the absorption. This result shows that it is possible in principle to extend by means of the ODMR of the absorption the regime of paramagnetic resonance detection of impurity ions to magnetic hosts, which strongly interact with the microwave field and, hence, make the impurity signals unobservable by means of conventional EPR. The observed ODMR signals are attributed to and ions by correlation with the optical bands of these species. By means of ODMR via the Faraday effect it is shown that this effect is due to transitions between Tb levels. The identification of the observed magnetic resonance structures is confirmed by calculations based on known information on and in diamagnetic hosts. The role of molecular fields is discussed.

[1]  Hamilton,et al.  Optical-absorption and photoionization measurements from the excited states of Ce3+:Y3Al5O12. , 1989, Physical review. B, Condensed matter.

[2]  C. Windsor,et al.  Determination ofEu3+-Fe3+andEu3+-Gd3+Exchange Interactions from Electron Paramagnetic Resonance Shifts in Europium Gallium Garnet , 1966 .

[3]  J. Schellman,et al.  Modulation Techniques in Polarization Spectroscopy , 1978 .

[4]  R. Bidaux,et al.  Propriétés magnétiques du grenat d'aluminium et de dysprosium. I. Théorie a 0 °K , 1968 .

[5]  B. Henderson,et al.  Optical spectroscopy of inorganic solids , 1989 .

[6]  F. Agullo-lopez,et al.  Insulating Materials for Optoelectronics: New Developments , 1995 .

[7]  Chen,et al.  Optical properties of color centers in calcium-stabilized gadolinium gallium garnets. , 1991, Physical review. B, Condensed matter.

[8]  R. White,et al.  Paramagnetic Resonance Spectrum of Ce3+ in Yttrium Gallium Garnet , 1967 .

[9]  J. Spaeth,et al.  Optically-detected magnetic resonance of intrinsic and impurity centers in ionic crystals , 1990 .

[10]  W. Krupke,et al.  Measurement of excited‐state‐absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare‐earth lasers , 1978 .

[11]  H. R. Lewis Paramagnetic Resonance of Ce3+ in Yttrium Aluminum Garnet , 1966 .

[12]  J. Hammann,et al.  Magnetic properties of an antiferromagnetic two-singlet system. II. Results on terbium aluminum garnet , 1973 .

[13]  Schulz,et al.  Investigation of the optical-absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques. , 1994, Physical review. B, Condensed matter.

[14]  Philip J. Stephens,et al.  Magnetic Optical Activity , 1966 .

[15]  M. Guillot,et al.  Step-like magnetisation curves in Tb3Ga5O12 , 1985 .

[16]  J. Hamman,et al.  Ordre magnétique électronique induit par les interactions hyperfines dans les grenats de gallium-holmium et de gallium-terbium , 1973 .

[17]  J. Hammann,et al.  Magnetic properties of antiferromagnetic two-singlet systems. I. Theoretical phase diagram , 1973 .

[18]  Romano A. Rupp,et al.  The photorefractive effect in terbium gallium garnet , 1995 .

[19]  M. Hutchings,et al.  Observation of Paramagnetic g-Value shifts by Exchange Interactions , 1963 .

[20]  R. Buchanan,et al.  Crystal Field Effects for Ce3+ and Yb3+ in the Garnets , 1966 .

[21]  M. J. Weber,et al.  Nonradiative decay from 5d states of rare earths in crystals , 1973 .

[22]  D. Mateika,et al.  Crystal-field analysis of Tb3+ doped yttrium aluminium garnet using site-selective polarized spectroscopy , 1986 .