Synthesis of bulk-size transparent gadolinium oxide-polymer nanocomposites for gamma ray spectroscopy.

Heavy element loaded polymer composites have long been proposed to detect high energy X- and γ-rays upon scintillation. The previously reported bulk composite scintillators have achieved limited success because of the diminished light output resulting from fluorescence quenching and opacity. We demonstrate the synthesis of a transparent nanocomposite comprising gadolinium oxide nanocrystals uniformly dispersed in bulk-size samples at a high loading content. The strategy to avoid luminescence quenching and opacity in the nanocomposite was successfully deployed, which led to the radioluminescence light yield of up to 27 000/MeV, about twice as much as standard commercial plastic scintillators. Nanocomposites monoliths (14 mm diameter by 3 mm thickness) with 31 wt% loading of nanocrystals generated a photoelectric peak for Cs-137 gamma (662 keV) with 11.4% energy resolution.

[1]  G. Wegner,et al.  In-Situ Bulk Polymerization of Dilute Particle/MMA Dispersions , 2007 .

[2]  K. Tsou,et al.  Quenching of the Scintillation Process in Plastics by Organometallics1 , 1964 .

[3]  J. J. Ryan,et al.  Heavy Elements in Plastic Scintillators , 1958, IRE Transactions on Nuclear Science.

[4]  Y. C. Cao,et al.  Synthesis of square gadolinium-oxide nanoplates. , 2004, Journal of the American Chemical Society.

[5]  L. J. Basile,et al.  Characteristics of Plastic Scintillators , 1957 .

[6]  P. Gómez‐Romero Hybrid Organic–Inorganic Materials—In Search of Synergic Activity , 2001 .

[7]  I. Campbell,et al.  Quantum‐Dot/Organic Semiconductor Composites for Radiation Detection , 2006 .

[8]  Bai Yang,et al.  High refractive index organic–inorganic nanocomposites: design, synthesis and application , 2009 .

[9]  Peter J. Hotchkiss,et al.  Phosphonic Acid‐Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength , 2007 .

[10]  J. B. Birks,et al.  Energy transfer in organic systems. XIII. Plastic scintillators , 1978 .

[11]  P. Townsend,et al.  Thermoluminescence responses from europium doped gadolinium oxide , 2006 .

[12]  Qibing Pei,et al.  A facile route to bulk high-Z polymer composites for gamma ray scintillation. , 2008, Chemical communications.

[13]  R. Murty Effective Atomic Numbers of Heterogeneous Materials , 1965, Nature.

[14]  A. S. Solov’ev,et al.  New heavy plastic scintillators , 2000 .

[15]  Ya‐Wen Zhang,et al.  Controlled-Synthesis, Self-Assembly Behavior, and Surface-Dependent Optical Properties of High-Quality Rare-Earth Oxide Nanocrystals , 2007 .

[16]  Q. Pei,et al.  Fluorescence resonance energy transfer in conjugated polymer composites for radiation detection. , 2008, Physical chemistry chemical physics : PCCP.

[17]  Bruce M. Novak,et al.  Hybrid nanocomposite materials―between inorganic glasses and organic polymers , 1993 .

[18]  Jinho Jang,et al.  Synthesis and flame-retardancy of UV-curable methacryloyloxy ethyl phosphates , 2008 .

[19]  Zhi Shan,et al.  Preparation and characterization of carboxyl-group functionalized superparamagnetic nanoparticles and t he potential for bio-applications , 2007 .

[20]  Q. Pei,et al.  Photoluminescence quenching of conjugated polymer nanocomposites for gamma ray detection , 2008, Nanotechnology.

[21]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[22]  Leif O. Brown,et al.  Large-scale synthesis of CexLa1−xF3 nanocomposite scintillator materials , 2011 .

[23]  L. Reven,et al.  Self-Assembly of Carboxyalkylphosphonic Acids on Metal Oxide Powders , 2002 .

[24]  P. Holloway,et al.  Controlled shape growth of Eu- or Tb-doped luminescent Gd2O3 colloidal nanocrystals. , 2009, Journal of colloid and interface science.

[25]  Z. Cho,et al.  Tin and Lead Loaded Plastic Scintillators for Low Energy Gamma-Ray Detection with Particular Application to High Rate Detection , 1975, IEEE Transactions on Nuclear Science.

[26]  I. Langmuir The Shapes of Group Molecules Forming the Surfaces of Liquids. , 1917, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Hey,et al.  1075. Homolytic aromatic substitution. Part XXIX. The photolysis of triphenylbismuth in aromatic solvents , 1963 .

[28]  Mehdi Hojjati,et al.  Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview , 2006 .

[29]  D. Sun,et al.  Optical Properties of ZnO Quantum Dots in Epoxy with Controlled Dispersion , 2008 .

[30]  J. Kropp,et al.  Effect of Added Quenchers in Organic Scintillator Solutions: Organometallics , 1962 .

[31]  Bernd Kahn,et al.  Synthesis of BaF2:Ce nanophosphor and epoxy encapsulated transparent nanocomposite , 2011 .

[32]  T. Aminabhavi,et al.  Plastic scintillating materials in nuclear medical imaging , 1997 .

[33]  M. Antonietti,et al.  Dispersion behavior of zirconia nanocrystals and their surface functionalization with vinyl group-containing ligands. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[34]  B. Gireń,et al.  The influence of excitation energy migration on excitation energy transfer in polystyrene solutions , 1990 .

[35]  Anthony J. Peurrung,et al.  Radiation detector materials: An overview , 2008 .

[36]  Matthieu Hamel,et al.  Preparation and characterization of highly lead-loaded red plastic scintillators under low energy x-rays , 2011 .