Quantum chaos triggered by precursors of a quantum phase transition: the dicke model.

We consider the Dicke Hamiltonian, a simple quantum-optical model which exhibits a zero-temperature quantum phase transition. We present numerical results demonstrating that at this transition the system changes from being quasi-integrable to quantum chaotic. By deriving an exact solution in the thermodynamic limit we relate this phenomenon to a localization-delocalization transition in which a macroscopic superposition is generated. We also describe the classical analogs of this behavior.

[1]  Hillery,et al.  Semiclassical expansion for nonlinear dielectric media. , 1985, Physical review. A, General physics.

[2]  Scaling of level statistics at the disorder-induced metal-insulator transition. , 1995, Physical review. B, Condensed matter.

[3]  T. V. Ramakrishnan,et al.  Disordered electronic systems , 1985 .

[4]  C. Emary,et al.  Time evolution of the Rabi Hamiltonian from the unexcited vacuum , 2001, quant-ph/0209102.

[5]  F. Haake Quantum signatures of chaos , 1991 .

[6]  Bernhard Kramer,et al.  Asymptotics of Universal Probability of Neighboring Level Spacings at the Anderson Transition , 1997 .

[7]  W. Heiss,et al.  Universal relationship between a quantum phase transition and instability points of classical systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[9]  D. Grempel,et al.  Chaos, Quantum Recurrences, and Anderson Localization , 1982 .

[10]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[11]  Heiss,et al.  Transitional regions of finite Fermi systems and quantum chaos. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[12]  Y. K. Wang,et al.  Phase Transition in the Dicke Model of Superradiance , 1973 .

[13]  P. B. Littlewood,et al.  Bose condensation of cavity polaritons beyond the linear regime: The thermal equilibrium of a model microcavity , 2001 .

[14]  I. Rabi Space Quantization in a Gyrating Magnetic Field , 1937 .

[15]  Integrability and Quantum Chaos in Spin Glass Shards , 1998, cond-mat/9807123.

[16]  M. Berry,et al.  Level clustering in the regular spectrum , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[18]  Emergence of Quantum Chaos in Finite Interacting Fermi Systems , 1997, cond-mat/9706040.

[19]  Kus Statistical properties of the spectrum of the two-level system. , 1985, Physical review letters.

[20]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[21]  Graham,et al.  Statistical spectral and dynamical properties of two-level systems. , 1986, Physical review letters.

[22]  P. Milonni,et al.  Chaos in the Semiclassical N-Atom Jaynes-Cummings Model: Failure of the Rotating-Wave Approximation , 1983 .

[23]  Gay,et al.  Quantum chaos and statistical properties of energy levels: Numerical study of the hydrogen atom in a magnetic field. , 1986, Physical review letters.

[24]  Georgeot,et al.  Quantum chaos border for quantum computing , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[26]  R. Graham,et al.  Two-state system coupled to a boson mode: Quantum dynamics and classical approximations , 1984 .

[27]  D. Grempel,et al.  Quantum dynamics of a nonintegrable system , 1984 .

[28]  Elliott H. Lieb,et al.  On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model , 1973 .

[29]  WAVE-FUNCTION ENTROPY AND DYNAMICAL SYMMETRY BREAKING IN THE INTERACTING BOSON MODEL , 1998, chao-dyn/9802024.