Facial expression recognition using local binary patterns and discriminant kernel locally linear embedding

Given the nonlinear manifold structure of facial images, a new kernel-based supervised manifold learning algorithm based on locally linear embedding (LLE), called discriminant kernel locally linear embedding (DKLLE), is proposed for facial expression recognition. The proposed DKLLE aims to nonlinearly extract the discriminant information by maximizing the interclass scatter while minimizing the intraclass scatter in a reproducing kernel Hilbert space. DKLLE is compared with LLE, supervised locally linear embedding (SLLE), principal component analysis (PCA), linear discriminant analysis (LDA), kernel principal component analysis (KPCA), and kernel linear discriminant analysis (KLDA). Experimental results on two benchmarking facial expression databases, i.e., the JAFFE database and the Cohn-Kanade database, demonstrate the effectiveness and promising performance of DKLLE.

[1]  Dong Liang,et al.  A facial expression recognition system based on supervised locally linear embedding , 2005, Pattern Recognit. Lett..

[2]  Chien-Cheng Lee,et al.  Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms , 2010, EURASIP J. Adv. Signal Process..

[3]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[4]  V. Kshirsagar,et al.  Face recognition using Eigenfaces , 2011, 2011 3rd International Conference on Computer Research and Development.

[5]  Michael J. Lyons,et al.  Automatic Classification of Single Facial Images , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  David R. Bull,et al.  Robust texture features for blurred images using Undecimated Dual-Tree Complex Wavelets , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[7]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[8]  Matti Pietikäinen,et al.  Supervised Locally Linear Embedding , 2003, ICANN.

[9]  Rosalind W. Picard Affective Computing , 1997 .

[10]  Ioannis Pitas,et al.  Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines , 2007, IEEE Transactions on Image Processing.

[11]  Lingxiao Zhao,et al.  Supervised locally linear embedding with probability-based distance for classification , 2009, Comput. Math. Appl..

[12]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[13]  Lahouari Cheded,et al.  An Exact FFT Recovery Theory: A Nonsubtractive Dither Quantization Approach with Applications , 2006, EURASIP J. Adv. Signal Process..

[14]  Abdesselam Bouzerdoum,et al.  A Human Gait Classification Method Based on Radar Doppler Spectrograms , 2010, EURASIP J. Adv. Signal Process..

[15]  Hongyuan Zha,et al.  Adaptive Manifold Learning , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Nicu Sebe,et al.  Authentic facial expression analysis , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[17]  Changbo Hu,et al.  Manifold of facial expression , 2003, 2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443).

[18]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[19]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[20]  Takeo Kanade,et al.  Recognizing Action Units for Facial Expression Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[22]  Rogério Schmidt Feris,et al.  Manifold Based Analysis of Facial Expression , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[23]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Bernhard Schölkopf,et al.  The Kernel Trick for Distances , 2000, NIPS.

[26]  De-Shuang Huang,et al.  Locally linear discriminant embedding: An efficient method for face recognition , 2008, Pattern Recognit..

[27]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[28]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[29]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[30]  Richard Bowden,et al.  Local binary patterns for multi-view facial expression recognition , 2011 .

[31]  Erkki Oja,et al.  Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003 , 2003, Lecture Notes in Computer Science.

[32]  Shaogang Gong,et al.  Robust facial expression recognition using local binary patterns , 2005, IEEE International Conference on Image Processing 2005.

[33]  Daijin Kim,et al.  Natural facial expression recognition using differential-AAM and manifold learning , 2009, Pattern Recognit..

[34]  Shaogang Gong,et al.  Appearance Manifold of Facial Expression , 2005, ICCV-HCI.

[35]  Shaogang Gong,et al.  Facial expression recognition based on Local Binary Patterns: A comprehensive study , 2009, Image Vis. Comput..

[36]  LinLin Shen,et al.  Information Theory for Gabor Feature Selection for Face Recognition , 2006, EURASIP J. Adv. Signal Process..

[37]  Paola Campadelli,et al.  Face and Facial Feature Localization , 2005, ICIAP.

[38]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[39]  Qijun Zhao,et al.  Facial expression recognition on multiple manifolds , 2011, Pattern Recognit..