Local Stress Regularity in Scalar Nonconvex Variational Problems

In light of applications to relaxed problems in the calculus of variations, this paper addresses convex but not necessarily strictly convex minimization problems. A class of energy functionals is described for which any stress field $\sigma$ in $L^q(\Omega)$ with $\operatorname{{\rm div}}\sigma$ in $W^{1,p'}(\Omega)$ belongs to $ W^{1,q}_{loc}(\Omega)$. The condition on $\operatorname{{\rm div}}\sigma$ holds, for example, for solutions of the Euler--Lagrange equations involving additional lower-order terms. Applications include the scalar double-well potential, an optimal design problem, a vectorial double-well problem in a compatible case, and Hencky elastoplasticity with hardening. If the energy density depends only on the modulus of the gradient, we also show regularity up to the boundary.

[1]  Carsten Carstensen,et al.  Adaptive algorithms for scalar non-convex variational problems , 1998 .

[2]  Arrigo Cellina,et al.  On minima of a functional of the gradient: necessary conditions , 1993 .

[3]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[4]  王东东,et al.  Computer Methods in Applied Mechanics and Engineering , 2004 .

[5]  Carsten Carstensen,et al.  Numerical Analysis of Compatible Phase Transitions in Elastic Solids , 2000, SIAM J. Numer. Anal..

[6]  R. Temam,et al.  Problèmes mathématiques en plasticité , 1983 .

[7]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[8]  Gabriel Wittum,et al.  Analysis and numerical studies of a problem of shape design , 1991 .

[9]  Gero Friesecke,et al.  A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[10]  John M. Ball,et al.  Regularity of quasiconvex envelopes , 2000 .

[11]  Carsten Carstensen,et al.  Numerical solution of the scalar double-well problem allowing microstructure , 1997, Math. Comput..

[12]  A. Mielke,et al.  A Variational Formulation of¶Rate-Independent Phase Transformations¶Using an Extremum Principle , 2002 .

[13]  Oskar Bolza,et al.  A Fifth Necessary Condition for a Strong Extremum of the Integral , 1906 .

[14]  R. Kohn,et al.  Numerical study of a relaxed variational problem from optimal design , 1986 .

[15]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[16]  L. Young,et al.  Lectures on the Calculus of Variations and Optimal Control Theory. , 1971 .

[17]  L. Young Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .

[18]  Robert V. Kohn,et al.  The relaxation of a double-well energy , 1991 .

[19]  Carsten Carstensen,et al.  A Posteriori Finite Element Error Control for the P-Laplace Problem , 2003, SIAM J. Sci. Comput..

[20]  Arrigo Cellina,et al.  On minima of a functional of the gradient: sufficient conditions , 1993 .

[21]  Tomáš Roubíček,et al.  Relaxation in Optimization Theory and Variational Calculus , 1997 .