Treatments of stiff source terms in conservation laws by the method of space-time conservation element/solution element

[1]  Sin-Chung Chang,et al.  On an origin of numerical diffusion: Violation of invariance under space-time inversion , 1992 .

[2]  James R. Scott Further Development of a New, Flux-Conserving Newton Scheme for the Navier-Stokes Equations , 1996 .

[3]  A. Himansu,et al.  The Method of Space-time Conservation Element and Solution Element: Development of a New Implicit Solver , 1995 .

[4]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[5]  Sin-Chung Chang,et al.  New developments in the method of space-time conservation element and solution element: Applications to the Euler and Navier-Stokes equations , 1993 .

[6]  Randall J. LeVeque,et al.  A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .

[7]  J. Scott,et al.  Computational aeroacoustics via the space-time conservation element/solution element method , 1996 .

[8]  Phillip Colella,et al.  Adaptive methods for high Mach number reacting flow , 1987 .

[9]  Sin-Chung Chang,et al.  THE METHOD OF SPACE-TIME CONSERVATION ELEMENT AND SOLUTION ELEMENT — A NEW PARADIGM FOR NUMERICAL SOLUTION OF CONSERVATION LAWS , 1998 .

[10]  Sin-Chung Chang,et al.  Application of the space-time conservation element and solution element method to shock-tube problem , 1994 .

[11]  Sin-Chung Chang,et al.  New Developments in the Method of Space-Time Conservation Element and Solution Element-Applications to Two-Dimensional Time-Marching Problems , 1994 .

[12]  S.-C. Chang,et al.  A NEW FLUX-CONSERVING NEWTON SCHEME FOR THE NAVIER-STOKES EQUATIONS , 1995 .

[13]  C. Loh,et al.  The space-time conservation element method - A new numerical scheme for computational aeroacoustics , 1996 .

[14]  Richard B. Pember,et al.  Numerical Methods for Hyperbolic Conservation Laws with Stiff Relaxation II. Higher-Order Godunov Methods , 1993, SIAM J. Sci. Comput..

[15]  Sin-Chung Chang,et al.  High Resolution Euler Solvers Based on the Space-Time Conservation Element and Solution Element Method , 1996 .

[16]  Sin-Chung Chang,et al.  A new flux conserving Newton's method scheme for the two-dimensional, steady Navier-Stokes equations , 1993 .

[17]  Sin-Chung Chang,et al.  An Euler solver based on the method of space-time conservation element and solution element , 1997 .

[18]  Sin-Chung Chang,et al.  The space-time solution element method: A new numerical approach for the Navier-Stokes equations , 1995 .

[19]  S. C. Chang,et al.  Computational aeroacoustics via a new global conservation scheme , 1997 .

[20]  G. R. Shubin,et al.  Steady shock tracking and Newton's method applied to one-dimensional duct flow , 1981 .

[21]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[22]  Sin-Chung Chang,et al.  The method of space-time conservation element and solution element-applications to one-dimensional and two-dimensional time-marching flow problems , 1995 .

[23]  Wai Ming To,et al.  A brief description of a new numerical framework for solving conservation laws — The method of space-time conservation element and solution element , 1991 .

[24]  Sin-Chung Chang,et al.  Numerical simulation of flows caused by shock-body interaction , 1996 .

[25]  Eduard Harabetian A Subcell Resolution Method for Viscous Systems of Conservation Laws , 1992 .