Optimal control in NMR spectroscopy: numerical implementation in SIMPSON.

We present the implementation of optimal control into the open source simulation package SIMPSON for development and optimization of nuclear magnetic resonance experiments for a wide range of applications, including liquid- and solid-state NMR, magnetic resonance imaging, quantum computation, and combinations between NMR and other spectroscopies. Optimal control enables efficient optimization of NMR experiments in terms of amplitudes, phases, offsets etc. for hundreds-to-thousands of pulses to fully exploit the experimentally available high degree of freedom in pulse sequences to combat variations/limitations in experimental or spin system parameters or design experiments with specific properties typically not covered as easily by standard design procedures. This facilitates straightforward optimization of experiments under consideration of rf and static field inhomogeneities, limitations in available or desired rf field strengths (e.g., for reduction of sample heating), spread in resonance offsets or coupling parameters, variations in spin systems etc. to meet the actual experimental conditions as close as possible. The paper provides a brief account on the relevant theory and in particular the computational interface relevant for optimization of state-to-state transfer (on the density operator level) and the effective Hamiltonian on the level of propagators along with several representative examples within liquid- and solid-state NMR spectroscopy.

[1]  Navin Khaneja,et al.  Optimization of Electron–Nuclear Polarization Transfer , 2008 .

[2]  Thomas Vosegaard,et al.  Numerical Simulations in Biological Solid-State NMR Spectroscopy , 2004 .

[3]  W. S. Veeman,et al.  Characterization of quantum algorithms by quantum process tomography using quadrupolar spins in solid-state nuclear magnetic resonance. , 2005, The Journal of chemical physics.

[4]  A. Macovski,et al.  Optimal Control Solutions to the Magnetic Resonance Selective Excitation Problem , 1986, IEEE Transactions on Medical Imaging.

[5]  Y. Zur,et al.  Design of adiabatic selective pulses using optimal control theory , 1996, Magnetic resonance in medicine.

[6]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[7]  T. Schulte-Herbrüggen,et al.  Bounds on spin dynamics tightened by permutation symmetry application to coherence transfer in I2S and I3S spin systems , 1995 .

[8]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[9]  N. Nielsen,et al.  A systematic strategy for design of optimum coherent experiments applied to efficient interconversion of double‐ and single‐quantum coherences in nuclear magnetic resonance , 1996 .

[10]  M Bak,et al.  SIMPSON: a general simulation program for solid-state NMR spectroscopy. , 2000, Journal of magnetic resonance.

[11]  U. Haeberlen,et al.  Coherent Averaging Effects in Magnetic Resonance , 1968 .

[12]  M. Hohwy,et al.  Efficient Spectral Simulations in NMR of Rotating Solids. The γ-COMPUTE Algorithm , 1999 .

[13]  Uwe Helmke,et al.  The significance of the C -numerical range and the local C -numerical range in quantum control and quantum information , 2007, math-ph/0701035.

[14]  Sorensen,et al.  Generalized bound on quantum dynamics: Efficiency of unitary transformations between non-Hermitian states. , 1995, Physical Review Letters.

[15]  B. Meier,et al.  Efficient N-15-C-13 polarization transfer by adiabatic-passage Hartmann-Hahn cross polarization , 1996 .

[16]  Burkhard Luy,et al.  Exploring the limits of broadband excitation and inversion pulses. , 2004, Journal of magnetic resonance.

[17]  John K. Ousterhout,et al.  Tcl and the Tk Toolkit , 1994 .

[18]  Steven O. Smith,et al.  Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR , 1994 .

[19]  Dionisis Stefanatos,et al.  Optimal control of coupled spins in the presence of longitudinal and transverse relaxation , 2004 .

[20]  Navin Khaneja,et al.  Optimal experiments for maximizing coherence transfer between coupled spins. , 2005, Journal of magnetic resonance.

[21]  R. A. Mckay,et al.  Quantitative determination of the concentrations of 13C15N chemical bonds by double cross-polarization NMR , 1984 .

[22]  N. Khaneja,et al.  Optimal control-based efficient synthesis of building blocks of quantum algorithms: A perspective from network complexity towards time complexity , 2005 .

[23]  Morten Bjerring,et al.  Solid-state NMR heteronuclear dipolar recoupling using off-resonance symmetry-based pulse sequences , 2003 .

[24]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[25]  S. Glaser,et al.  Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy , 1998, Science.

[26]  Optimal control based design of composite dipolar recoupling experiments by analogy to single-spin inversion pulses , 2007 .

[27]  Thomas H. Mareci,et al.  Selective inversion radiofrequency pulses by optimal control , 1986 .

[28]  Heteronuclear coherence transfer in solid-state nuclear magnetic resonance using a γ-encoded transferred echo experiment , 2003 .

[29]  Navin Khaneja,et al.  Optimal control based NCO and NCA experiments for spectral assignment in biological solid-state NMR spectroscopy. , 2007, Journal of magnetic resonance.

[30]  Solid-state NMR heteronuclear coherence transfer using phase and amplitude modulated rf irradiation at the Hartmann–Hahn sideband conditions , 2003 .

[31]  M. Hohwy,et al.  Systematic design and evaluation of multiple-pulse experiments in nuclear magnetic resonance spectroscopy using a semi-continuous Baker–Campbell–Hausdorff expansion , 1998 .

[32]  S. Glaser,et al.  α&β HSQC, an HSQC-Type Experiment with Improved Resolution for I2S Groups , 1996 .

[33]  N. Nielsen,et al.  Exact effective Hamiltonian theory. II. Polynomial expansion of matrix functions and entangled unitary exponential operators. , 2004, The Journal of chemical physics.

[34]  Navin Khaneja,et al.  Effective Hamiltonians by optimal control: solid-state NMR double-quantum planar and isotropic dipolar recoupling. , 2006, The Journal of chemical physics.

[35]  Burkhard Luy,et al.  Pattern pulses: design of arbitrary excitation profiles as a function of pulse amplitude and offset. , 2005, Journal of magnetic resonance.

[36]  A. Malmendal,et al.  The Flexibility of SIMPSON and SIMMOL for Numerical Simulations in Solid-and Liquid-State NMR Spectroscopy , 2002 .

[37]  Navin Khaneja,et al.  Time-optimal synthesis of unitary transformations in a coupled fast and slow qubit system , 2007, 0709.4484.

[38]  Brent B Welch,et al.  Practical Programming in Tcl and Tk , 1999 .

[39]  Navin Khaneja,et al.  Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer , 2002 .

[40]  O. W. Sørensen A universal bound on spin dynamics , 1990 .

[41]  Navin Khaneja,et al.  Composite dipolar recoupling: anisotropy compensated coherence transfer in solid-state nuclear magnetic resonance. , 2006, The Journal of chemical physics.

[42]  Closed solution to the Baker-Campbell-Hausdorff problem: exact effective Hamiltonian theory for analysis of nuclear-magnetic-resonance experiments. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Bak,et al.  REPULSION, A Novel Approach to Efficient Powder Averaging in Solid-State NMR , 1997, Journal of magnetic resonance.

[44]  David G. Cory,et al.  Universal control of nuclear spins via anisotropic hyperfine interactions , 2007 .

[45]  Navin Khaneja,et al.  Improving solid-state NMR dipolar recoupling by optimal control. , 2004, Journal of the American Chemical Society.

[46]  D. Bruß,et al.  Lectures on Quantum Information , 2007 .

[47]  Burkhard Luy,et al.  Exploring the limits of broadband excitation and inversion: II. Rf-power optimized pulses. , 2008, Journal of magnetic resonance.

[48]  Navin Khaneja,et al.  Time-optimal coherence-order-selective transfer of in-phase coherence in heteronuclear IS spin systems. , 2002, Journal of magnetic resonance.

[49]  V. Krotov,et al.  Global methods in optimal control theory , 1993 .

[50]  N. Khaneja,et al.  Broadband relaxation-optimized polarization transfer in magnetic resonance. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  L. Bittner L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishechenko, The Mathematical Theory of Optimal Processes. VIII + 360 S. New York/London 1962. John Wiley & Sons. Preis 90/– , 1963 .

[52]  N. Nielsen,et al.  Specification and visualization of anisotropic interaction tensors in polypeptides and numerical simulations in biological solid-state NMR. , 2002, Journal of magnetic resonance.

[53]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[54]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[55]  Dionisis Stefanatos,et al.  Relaxation-optimized transfer of spin order in Ising spin chains (6 pages) , 2005 .

[56]  V. Bergholm,et al.  Optimal control of coupled Josephson qubits , 2005, quant-ph/0504202.

[57]  Low-power homonuclear dipolar recoupling in solid-state NMR developed using optimal control theory , 2005 .

[58]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[59]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[60]  G. Mckinnon,et al.  Designing multichannel, multidimensional, arbitrary flip angle RF pulses using an optimal control approach , 2008, Magnetic resonance in medicine.

[61]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[62]  N. Khaneja,et al.  Improved excitation schemes for multiple-quantum magic-angle spinning for quadrupolar nuclei designed using optimal control theory. , 2005, Journal of the American Chemical Society.

[63]  Timothy F. Havel,et al.  Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing , 2002, quant-ph/0202065.

[64]  Navin Khaneja,et al.  Switched control of electron nuclear spin systems , 2007, 0707.1572.

[65]  Andreas Spörl,et al.  Shortest paths for efficient control of indirectly coupled qubits , 2007 .

[66]  N. Nielsen,et al.  Double‐quantum homonuclear rotary resonance: Efficient dipolar recovery in magic‐angle spinning nuclear magnetic resonance , 1994 .

[67]  N. Nielsen,et al.  Doubling the Sensitivity of INADEQUATE for Tracing Out the Carbon Skeleton of Molecules by NMR , 1995 .

[68]  I. Maximov,et al.  Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms. , 2008, The Journal of chemical physics.

[69]  Burkhard Luy,et al.  Boundary of quantum evolution under decoherence , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Timo O. Reiss,et al.  Optimal control of spin dynamics in the presence of relaxation. , 2002, Journal of magnetic resonance.

[71]  Composite Dipolar Recoupling : Anisotropy Compensated Coherence Transfer in Solid-State NMR , 2008 .

[72]  Exploring the limits of polarization transfer efficiency in homonuclear three spin systems. , 2006, Journal of magnetic resonance.