Self-organizing map for symbolic data
暂无分享,去创建一个
[1] Wei-Shen Tai,et al. Apply extended self-organizing map to cluster and classify mixed-type data , 2011, Neurocomputing.
[2] Miin-Shen Yang,et al. A fuzzy-soft learning vector quantization for control chart pattern recognition , 2002 .
[3] L. Billard,et al. From the Statistics of Data to the Statistics of Knowledge , 2003 .
[4] Partitional clustering algorithms for symbolic interval data based on single adaptive distances , 2009 .
[5] Lynne Billard. Brief overview of symbolic data and analytic issues , 2011, Stat. Anal. Data Min..
[6] Sushmita Mitra,et al. Clustering and its validation in a symbolic framework , 2003, Pattern Recognit. Lett..
[7] Teuvo Kohonen,et al. The self-organizing map , 1990 .
[8] Yves Lechevallier,et al. Partitional clustering algorithms for symbolic interval data based on single adaptive distances , 2009, Pattern Recognit..
[9] Carlos Dafonte,et al. HSC: A multi-resolution clustering strategy in Self-Organizing Maps applied to astronomical observations , 2012, Appl. Soft Comput..
[10] James M. Keller,et al. Computing With Words With the Ontological Self-Organizing Map , 2010, IEEE Transactions on Fuzzy Systems.
[11] R. Lippmann,et al. An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.
[12] Yoshua Bengio,et al. Pattern Recognition and Neural Networks , 1995 .
[13] Fabrice Rossi,et al. Fast Algorithm and Implementation of Dissimilarity Self-Organizing Maps , 2006, Neural Networks.
[14] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[15] Edwin Diday,et al. Symbolic clustering using a new dissimilarity measure , 1991, Pattern Recognit..
[16] Hans-Hermann Bock,et al. Dynamic clustering for interval data based on L2 distance , 2006, Comput. Stat..
[17] Ryszard S. Michalski,et al. Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[18] Edwin Diday,et al. Application of symbolic data analysis for structural modification assessment , 2010 .
[19] Francisco de A. T. de Carvalho,et al. Fuzzy c-means clustering methods for symbolic interval data , 2007, Pattern Recognit. Lett..
[20] Yves Lechevallier,et al. New clustering methods for interval data , 2006, Comput. Stat..
[21] T. Kohonen. Self-Organized Formation of Correct Feature Maps , 1982 .
[22] Qin Yang,et al. Analysis of fMRI Data Using Improved Self-Organizing Mapping and Spatio-Temporal Metric Hierarchical Clustering , 2008, IEEE Transactions on Medical Imaging.
[23] K. Chidananda Gowda,et al. Symbolic clustering using a new similarity measure , 1992, IEEE Trans. Syst. Man Cybern..
[24] S. Grossberg,et al. Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors , 1976, Biological Cybernetics.
[25] Babak Rezaee,et al. A cluster validity index for fuzzy clustering , 2010, Fuzzy Sets Syst..
[26] Francisco de A. T. de Carvalho,et al. Unsupervised pattern recognition models for mixed feature-type symbolic data , 2010, Pattern Recognit. Lett..
[27] F ROSENBLATT,et al. The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.
[28] T. Kohonen. Self-organized formation of topographically correct feature maps , 1982 .
[29] P. Nagabhushan,et al. Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns , 2004, Pattern Recognit. Lett..
[30] Weixin Xie,et al. Suppressed fuzzy c-means clustering algorithm , 2003, Pattern Recognit. Lett..
[31] Monique Noirhomme-Fraiture,et al. Far beyond the classical data models: symbolic data analysis , 2011, Stat. Anal. Data Min..
[32] Yves Lechevallier,et al. Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.
[33] Donato Malerba,et al. Comparing Dissimilarity Measures for Symbolic Data Analysis , 2001 .
[34] Christopher J. Merz,et al. UCI Repository of Machine Learning Databases , 1996 .
[35] Gerardo Beni,et al. A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[36] Miin-Shen Yang,et al. Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation , 2006, Pattern Recognit. Lett..
[37] Francisco de A. T. de Carvalho,et al. Clustering of interval data based on city-block distances , 2004, Pattern Recognit. Lett..
[38] Mohamed A. Ismail,et al. Fuzzy clustering for symbolic data , 1998, IEEE Trans. Fuzzy Syst..
[39] Yves Lechevallier,et al. Adaptative Hausdorff Distances and Dynamic Clustering of Symbolic Interval Data , 2017 .
[40] Hans-Hermann Bock,et al. Visualizing Symbolic Data by Kohonen Maps , 2008 .
[41] Zhen-Ping Lo,et al. On the rate of convergence in topology preserving neural networks , 1991, Biological Cybernetics.
[42] Tommy W. S. Chow,et al. Multilayer SOM With Tree-Structured Data for Efficient Document Retrieval and Plagiarism Detection , 2009, IEEE Transactions on Neural Networks.
[43] Miin-Shen Yang,et al. Fuzzy clustering algorithms for mixed feature variables , 2004, Fuzzy Sets Syst..
[44] Antonio Irpino,et al. Dynamic clustering of interval data using a Wasserstein-based distance , 2008, Pattern Recognit. Lett..
[45] Miin-Shen Yang. A survey of fuzzy clustering , 1993 .
[46] Yizong Cheng. Convergence and Ordering of Kohonen's Batch Map , 1997, Neural Computation.
[47] Stephen Grossberg,et al. Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions , 1976, Biological Cybernetics.
[48] D. S. Guru,et al. Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns , 2005, Pattern Recognit..
[49] Miin-Shen Yang,et al. A fuzzy-soft learning vector quantization , 2003, Neurocomputing.
[50] K. Schulten,et al. On the stationary state of Kohonen's self-organizing sensory mapping , 2004, Biological Cybernetics.
[51] Simon Haykin,et al. Neural networks , 1994 .
[52] Teuvo Kohonen,et al. Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.
[53] Francisco de A. T. de Carvalho,et al. Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances , 2010, Fuzzy Sets Syst..