Self-organizing map for symbolic data

Kohonen's self-organizing map (SOM) is a competitive learning neural network that uses a neighborhood lateral interaction function to discover the topological structure hidden in the data set. It is an unsupervised learning which has both visualization and clustering properties. In general, the SOM neural network is constructed as a learning algorithm for numeric (vector) data. Although there are different SOM clustering methods for numeric data with real applications in the literature, there is less consideration in a SOM clustering for symbolic data. In this paper, we modify the SOM so that it can treat symbolic data and a so-called symbolic SOM (S-SOM) is then proposed. We first use novel structures to represent symbolic neurons. We then use a suppression concept to create a learning rule for neurons. Therefore, the S-SOM is created for treating symbolic data by embedding the novel structure and the suppression learning rule. Some real data sets are applied with the S-SOM. The experimental results show the feasibility and effectiveness of the proposed S-SOM in these real applications.

[1]  Wei-Shen Tai,et al.  Apply extended self-organizing map to cluster and classify mixed-type data , 2011, Neurocomputing.

[2]  Miin-Shen Yang,et al.  A fuzzy-soft learning vector quantization for control chart pattern recognition , 2002 .

[3]  L. Billard,et al.  From the Statistics of Data to the Statistics of Knowledge , 2003 .

[4]  Partitional clustering algorithms for symbolic interval data based on single adaptive distances , 2009 .

[5]  Lynne Billard Brief overview of symbolic data and analytic issues , 2011, Stat. Anal. Data Min..

[6]  Sushmita Mitra,et al.  Clustering and its validation in a symbolic framework , 2003, Pattern Recognit. Lett..

[7]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[8]  Yves Lechevallier,et al.  Partitional clustering algorithms for symbolic interval data based on single adaptive distances , 2009, Pattern Recognit..

[9]  Carlos Dafonte,et al.  HSC: A multi-resolution clustering strategy in Self-Organizing Maps applied to astronomical observations , 2012, Appl. Soft Comput..

[10]  James M. Keller,et al.  Computing With Words With the Ontological Self-Organizing Map , 2010, IEEE Transactions on Fuzzy Systems.

[11]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[12]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[13]  Fabrice Rossi,et al.  Fast Algorithm and Implementation of Dissimilarity Self-Organizing Maps , 2006, Neural Networks.

[14]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[15]  Edwin Diday,et al.  Symbolic clustering using a new dissimilarity measure , 1991, Pattern Recognit..

[16]  Hans-Hermann Bock,et al.  Dynamic clustering for interval data based on L2 distance , 2006, Comput. Stat..

[17]  Ryszard S. Michalski,et al.  Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Edwin Diday,et al.  Application of symbolic data analysis for structural modification assessment , 2010 .

[19]  Francisco de A. T. de Carvalho,et al.  Fuzzy c-means clustering methods for symbolic interval data , 2007, Pattern Recognit. Lett..

[20]  Yves Lechevallier,et al.  New clustering methods for interval data , 2006, Comput. Stat..

[21]  T. Kohonen Self-Organized Formation of Correct Feature Maps , 1982 .

[22]  Qin Yang,et al.  Analysis of fMRI Data Using Improved Self-Organizing Mapping and Spatio-Temporal Metric Hierarchical Clustering , 2008, IEEE Transactions on Medical Imaging.

[23]  K. Chidananda Gowda,et al.  Symbolic clustering using a new similarity measure , 1992, IEEE Trans. Syst. Man Cybern..

[24]  S. Grossberg,et al.  Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors , 1976, Biological Cybernetics.

[25]  Babak Rezaee,et al.  A cluster validity index for fuzzy clustering , 2010, Fuzzy Sets Syst..

[26]  Francisco de A. T. de Carvalho,et al.  Unsupervised pattern recognition models for mixed feature-type symbolic data , 2010, Pattern Recognit. Lett..

[27]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[28]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[29]  P. Nagabhushan,et al.  Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns , 2004, Pattern Recognit. Lett..

[30]  Weixin Xie,et al.  Suppressed fuzzy c-means clustering algorithm , 2003, Pattern Recognit. Lett..

[31]  Monique Noirhomme-Fraiture,et al.  Far beyond the classical data models: symbolic data analysis , 2011, Stat. Anal. Data Min..

[32]  Yves Lechevallier,et al.  Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[33]  Donato Malerba,et al.  Comparing Dissimilarity Measures for Symbolic Data Analysis , 2001 .

[34]  Christopher J. Merz,et al.  UCI Repository of Machine Learning Databases , 1996 .

[35]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Miin-Shen Yang,et al.  Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation , 2006, Pattern Recognit. Lett..

[37]  Francisco de A. T. de Carvalho,et al.  Clustering of interval data based on city-block distances , 2004, Pattern Recognit. Lett..

[38]  Mohamed A. Ismail,et al.  Fuzzy clustering for symbolic data , 1998, IEEE Trans. Fuzzy Syst..

[39]  Yves Lechevallier,et al.  Adaptative Hausdorff Distances and Dynamic Clustering of Symbolic Interval Data , 2017 .

[40]  Hans-Hermann Bock,et al.  Visualizing Symbolic Data by Kohonen Maps , 2008 .

[41]  Zhen-Ping Lo,et al.  On the rate of convergence in topology preserving neural networks , 1991, Biological Cybernetics.

[42]  Tommy W. S. Chow,et al.  Multilayer SOM With Tree-Structured Data for Efficient Document Retrieval and Plagiarism Detection , 2009, IEEE Transactions on Neural Networks.

[43]  Miin-Shen Yang,et al.  Fuzzy clustering algorithms for mixed feature variables , 2004, Fuzzy Sets Syst..

[44]  Antonio Irpino,et al.  Dynamic clustering of interval data using a Wasserstein-based distance , 2008, Pattern Recognit. Lett..

[45]  Miin-Shen Yang A survey of fuzzy clustering , 1993 .

[46]  Yizong Cheng Convergence and Ordering of Kohonen's Batch Map , 1997, Neural Computation.

[47]  Stephen Grossberg,et al.  Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions , 1976, Biological Cybernetics.

[48]  D. S. Guru,et al.  Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns , 2005, Pattern Recognit..

[49]  Miin-Shen Yang,et al.  A fuzzy-soft learning vector quantization , 2003, Neurocomputing.

[50]  K. Schulten,et al.  On the stationary state of Kohonen's self-organizing sensory mapping , 2004, Biological Cybernetics.

[51]  Simon Haykin,et al.  Neural networks , 1994 .

[52]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[53]  Francisco de A. T. de Carvalho,et al.  Fuzzy K-means clustering algorithms for interval-valued data based on adaptive quadratic distances , 2010, Fuzzy Sets Syst..