Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points

This paper reports the finding of unusual hidden and self-excited coexisting dynamical behaviors in an existing Lorenz-like system. For different parameters, the system has different types of equilibrium points, such as saddle-nodes, stable focus-nodes, saddle-foci and nonhyperbolic equilibrium points, which can be used to find different types of hidden and self-excited attractors. The different types of attractors have been vividly demonstrated by several numerical techniques including phase portraits, bifurcation diagrams and basins of attraction. Very interestingly, we find the rare coexistence of chaotic attractor and periodic orbits in the Lorenz-like system with two saddle-foci.

[1]  Qigui Yang,et al.  A Chaotic System with One saddle and Two Stable Node-Foci , 2008, Int. J. Bifurc. Chaos.

[2]  Leo R. M. Maas,et al.  The diffusionless Lorenz equations; Shil'nikov bifurcations and reduction to an explicit map , 2000 .

[3]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[4]  Jacques Kengne,et al.  Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors , 2018 .

[5]  Nikolay V. Kuznetsov,et al.  Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors , 2014 .

[6]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[7]  Julien Clinton Sprott,et al.  Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.

[8]  B. Bao,et al.  Multistability in Chua's circuit with two stable node-foci. , 2016, Chaos.

[9]  Christos Volos,et al.  Coexistence of hidden chaotic attractors in a novel no-equilibrium system , 2017 .

[10]  Yu Feng,et al.  Hidden attractors without equilibrium and adaptive reduced-order function projective synchronization from hyperchaotic Rikitake system , 2017 .

[11]  Bocheng Bao,et al.  Finding hidden attractors in improved memristor-based Chua''s circuit , 2015 .

[13]  Nikolay V. Kuznetsov,et al.  Hidden Attractors on One Path: Glukhovsky-Dolzhansky, Lorenz, and Rabinovich Systems , 2017, Int. J. Bifurc. Chaos.

[14]  Lei Wang,et al.  A Note on Hidden Transient Chaos in the Lorenz System , 2017 .

[15]  Jacques Kengne,et al.  Coexistence of hidden attractors, 2-torus and 3-torus in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity , 2018 .

[16]  Bocheng Bao,et al.  Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit , 2015 .

[17]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[18]  Karthikeyan Rajagopal,et al.  Hyperchaotic Memcapacitor Oscillator with Infinite Equilibria and Coexisting Attractors , 2018, Circuits Syst. Signal Process..

[19]  Nikolay V. Kuznetsov,et al.  Control of multistability in hidden attractors , 2015 .

[20]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[21]  Nikolay V. Kuznetsov,et al.  Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..

[22]  Buncha Munmuangsaen,et al.  A hidden chaotic attractor in the classical Lorenz system , 2018 .

[23]  Zenghui Wang,et al.  A general method for exploring three-dimensional chaotic attractors with complicated topological structure based on the two-dimensional local vector field around equilibriums , 2016 .

[24]  Debin Huang Periodic orbits and homoclinic orbits of the diffusionless Lorenz equations , 2003 .

[25]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[26]  Przemyslaw Perlikowski,et al.  Synchronization extends the life time of the desired behavior of globally coupled systems , 2014, Scientific reports.

[27]  E. O. Ochola,et al.  A hyperchaotic system without equilibrium , 2012 .

[28]  Julien Clinton Sprott,et al.  Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping , 2017 .

[29]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[30]  Jobst Heitzig,et al.  How dead ends undermine power grid stability , 2014, Nature Communications.

[31]  Nikolay V. Kuznetsov,et al.  Analytical-numerical method for attractor localization of generalized Chua's system , 2010, PSYCO.

[32]  N. V. Kuznetsov,et al.  Hidden attractors in fundamental problems and engineering models. A short survey , 2015, 1510.04803.

[33]  Yang Liu,et al.  Controlling coexisting attractors of an impacting system via linear augmentation , 2017 .

[34]  Aceng Sambas,et al.  A new three-dimensional chaotic system with a hidden attractor, circuit design and application in wireless mobile robot , 2017 .

[35]  Julien Clinton Sprott,et al.  Simple Chaotic Flows with a Curve of Equilibria , 2016, Int. J. Bifurc. Chaos.

[36]  Sundarapandian Vaidyanathan,et al.  Dynamics, circuit realization, control and synchronization of a hyperchaotic hyperjerk system with coexisting attractors , 2017 .

[37]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[38]  Zhouchao Wei,et al.  Hidden Hyperchaotic Attractors in a Modified Lorenz-Stenflo System with Only One Stable Equilibrium , 2014, Int. J. Bifurc. Chaos.

[39]  Viet-Thanh Pham,et al.  Generating a Chaotic System with One Stable Equilibrium , 2017, Int. J. Bifurc. Chaos.

[40]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[41]  Guanrong Chen,et al.  An Unusual 3D Autonomous Quadratic Chaotic System with Two Stable Node-Foci , 2010, Int. J. Bifurc. Chaos.

[42]  Erik Mosekilde,et al.  Multistability and hidden attractors in a multilevel DC/DC converter , 2015, Math. Comput. Simul..

[43]  Jianghong Bao,et al.  Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium , 2017 .

[44]  Ivan Zelinka,et al.  AETA 2015: Recent Advances in Electrical Engineering and Related Sciences , 2016 .

[45]  Zenghui Wang,et al.  Birth of one-to-four-wing chaotic attractors in a class of simplest three-dimensional continuous memristive systems , 2016 .

[46]  Mo Chen,et al.  Self-Excited and Hidden Attractors Found Simultaneously in a Modified Chua's Circuit , 2015, Int. J. Bifurc. Chaos.

[47]  Viet-Thanh Pham,et al.  Multiscroll Chaotic Sea Obtained from a Simple 3D System Without Equilibrium , 2016, Int. J. Bifurc. Chaos.

[48]  Damian Słota,et al.  Cardano's formula, square roots, Chebyshev polynomials and radicals , 2010 .

[49]  R. Lozi,et al.  COEXISTING CHAOTIC ATTRACTORS IN CHUA'S CIRCUIT , 1991 .

[50]  Julien Clinton Sprott,et al.  A Simple Chaotic Flow with a Plane of Equilibria , 2016, Int. J. Bifurc. Chaos.

[51]  O. Rössler An equation for continuous chaos , 1976 .