Strong minimality of abnormal geodesics for 2-distributions
暂无分享,去创建一个
[1] A V Saryčev,et al. THE INDEX OF THE SECOND VARIATION OF A CONTROL SYSTEM , 1982 .
[2] Shlomo Sternberg,et al. Geometric Asymptotics, Revised edition , 1977 .
[3] Wensheng Liu,et al. Shortest paths for sub-Riemannian metrics on rank-two distributions , 1996 .
[4] Andrei A. Agrachev,et al. Quadratic mappings in geometric control theory , 1990 .
[5] 鍋谷 清治,et al. The Mathematical Theory of Optimal Processes by L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mischenko , 1964 .
[6] Claude Lobry,et al. Dynamical Polysystems and Control Theory , 1973 .
[7] M. Hestenes. Applications of the theory of quadratic forms in Hilbert space to the calculus of variations. , 1951 .
[8] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[9] Robert L. Bryant,et al. Rigidity of integral curves of rank 2 distributions , 1993 .
[10] George Leitman,et al. Topics in optimization , 1967 .
[11] H. Gardner Moyer,et al. 3 Singular Extremals , 1967 .
[12] Andrei A. Agrachev,et al. Local invariants of smooth control systems , 1989 .
[13] R. Montgomery. Abnormal Minimizers , 1994 .
[14] Andrei A. Agrachev,et al. Abnormal sub-riemannian geodesics : Morse index and rigidity , 1996 .
[15] A. Krener. The High Order Maximal Principle and Its Application to Singular Extremals , 1977 .