SPITZER MICROLENS MEASUREMENT OF A MASSIVE REMNANT IN A WELL-SEPARATED BINARY

We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having M1 > 1.35 M⊙ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star (NS) or black hole (BH). The system has a projected separation r⊥ = 6.1 ± 0.4 AU and lies in the Galactic bulge. These measurements are based on the "microlens parallax" effect, i.e., comparing the microlensing light curve as seen from Spitzer, which lay at 1.25 AU projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near-infrared. Future adaptive optics imaging of the companion by 30 m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing BHs and NSs in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future Spitzer and Kepler K2 microlensing parallax observations.

K. Ulaczyk | R. A. Street | I. A. Steele | Keith Horne | M. Dominik | S. Calchi Novati | G. Scarpetta | U. G. Jorgensen | J. Skottfelt | E. Bachelet | D. Maoz | A. Udalski | S. Kozlowski | D. M. Bramich | A. Cassan | R. Figuera Jaimes | M. Hundertmark | C. Ranc | C. Snodgrass | J. Wambsganss | V. Bozza | G. D'Ago | M. Friedmann | S. Kaspi | M. Fausnaugh | R. Poleski | B. S. Gaudi | J. Skowron | M. Pawlak | P. Pietrukowicz | S. Carey | W. Varricatt | Y. Shvartzvald | E. Kerins | G. Scarpetta | D. Maoz | E. Bachelet | B. Gaudi | R. Poleski | R. Street | K. Ulaczyk | C. Beichman | S. Dong | J. Wambsganss | M. Pawlak | R. Pogge | J. Menzies | I. Steele | W. Zhu | D. Bramich | S. Carey | U. Jørgensen | K. Horne | M. Dominik | J. Skottfelt | M. Fausnaugh | A. Udalski | C. Snodgrass | C. Henderson | S. Kaspi | V. Bozza | M. Hundertmark | R. Schmidt | T. Kerr | S. Cha | I. Soszy'nski | M. Szyma'nski | P. Pietrukowicz | J. Skowron | P. Mr'oz | S. Kozłowski | G. Pietrzy'nski | Ł. Wyrzykowski | S. Mao | H. Park | Y. Tsapras | M. Albrow | A. Gould | J. Yee | C. Han | Y. Jung | I. Shin | Y. Shvartzvald | S.-L. Kim | Y. Lee | B.-G. Park | P. Verma | L. Wyrzykowski | C. Beichman | A. Gould | G. D’ago | W. Varricatt | A. Cassan | J. Choi | R. W. Pogge | C. Han | Y. K. Jung | M. D. Albrow | S.-L. Kim | C.-U. Lee | S.-M. Cha | D.-J. Kim | Y. Lee | B.-G. Park | I.-G. Shin | M. K. Szyma'nski | I. Soszy'nski | E. Kerins | T. Kerr | J. Menzies | Y. Tsapras | Subo Dong | J. C. Yee | W. Zhu | C. Ranc | G. Bryden | B. Wibking | H. Park | G. Pietrzy'nski | S. Mao | G. Bryden | P. Mr'oz | C. B. Henderson | B. Wibking | R. Schmidt | R. Jaimes | J.-Y.Choi | P. Verma | D.-J. Kim | M. Friedmann | S. C. Novati | C.‐U. Lee | J.-Y. Choi

[1]  K. Ulaczyk,et al.  PATHWAY TO THE GALACTIC DISTRIBUTION OF PLANETS: COMBINED SPITZER AND GROUND-BASED MICROLENS PARALLAX MEASUREMENTS OF 21 SINGLE-LENS EVENTS , 2014, 1411.7378.

[2]  X. Wu,et al.  DELAYED ENERGY INJECTION MODEL FOR GAMMA-RAY BURST AFTERGLOWS , 2013, 1307.4517.

[3]  D. M. Bramich,et al.  A new algorithm for difference image analysis , 2008, 0802.1273.

[4]  K. Ulaczyk,et al.  SPITZER AS A MICROLENS PARALLAX SATELLITE: MASS MEASUREMENT FOR THE OGLE-2014-BLG-0124L PLANET AND ITS HOST STAR , 2014, 1410.4219.

[5]  V. Belokurov,et al.  ASTROMETRIC MICROLENSING WITH THE GAIA SATELLITE , 2001, Gaia.

[6]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[7]  M. Walker Microlensed Image Motions , 1995 .

[8]  K. Ulaczyk,et al.  First Space-Based Microlens Parallax Measurement: Spitzer Observations of OGLE-2005-SMC-001 , 2007, astro-ph/0702240.

[9]  B. Monard,et al.  MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf , 2011, 1102.0558.

[10]  Kaspar von Braun,et al.  STELLAR DIAMETERS AND TEMPERATURES. IV. PREDICTING STELLAR ANGULAR DIAMETERS , 2013, 1311.4901.

[11]  M. Penny,et al.  WFIRST ULTRA-PRECISE ASTROMETRY II: ASTEROSEISMOLOGY , 2015 .

[12]  K. Ulaczyk,et al.  SPITZER AS A MICROLENS PARALLAX SATELLITE: MASS AND DISTANCE MEASUREMENTS OF BINARY LENS SYSTEM OGLE-2014-BLG-1050L , 2015, 1501.04107.

[13]  A. Gould,et al.  Microlens Parallaxes of Binary Lenses Measured from a Satellite , 2002, astro-ph/0203313.

[14]  O. Pejcha,et al.  EXTENDED-SOURCE EFFECT AND CHROMATICITY IN TWO-POINT-MASS MICROLENSING , 2007, 0712.2217.

[15]  K. Ulaczyk,et al.  FIRST SPACE-BASED MICROLENS PARALLAX MEASUREMENT OF AN ISOLATED STAR: SPITZER OBSERVATIONS OF OGLE-2014-BLG-0939 , 2014, 1410.5429.

[16]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[17]  Andrew Gould,et al.  A Natural Formalism for Microlensing , 2000, astro-ph/0001421.

[18]  Andrew Gould,et al.  SYSTEMATIC ANALYSIS OF 22 MICROLENSING PARALLAX CANDIDATES , 2005, astro-ph/0506183.

[19]  A. Gould Hexadecapole Approximation in Planetary Microlensing , 2008, 0801.2578.

[20]  Andrew Gould,et al.  Extending the MACHO Search to approximately 10 6 M sub sun , 1992 .

[21]  A. Gould,et al.  Stokes's Theorem Applied to Microlensing of Finite Sources , 1997 .

[22]  S. Refsdal,et al.  On the Possibility of Determining the Distances and Masses of Stars from the Gravitational Lens Effect , 1966 .

[23]  A. Gal-Yam,et al.  OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens , 2003, astro-ph/0309302.

[24]  B. Paczyński,et al.  Acceleration and parallax effects in gravitational microlensing , 2002, astro-ph/0210370.

[25]  Andrew Gould,et al.  KEPLER-LIKE MULTI-PLEXING FOR MASS PRODUCTION OF MICROLENS PARALLAXES , 2013, 1310.4208.

[26]  Andrew Gould,et al.  Microlens Masses from 1-D Parallaxes and Heliocentric Proper Motions , 2014, 1408.0797.

[27]  F. Thevenin,et al.  The angular sizes of dwarf stars and subgiants Surface brightness relations calibrated by interferometry , 2004, astro-ph/0404180.

[28]  A. Udalski The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .

[29]  A. Bhattacharya,et al.  CONFIRMATION OF THE OGLE-2005-BLG-169 PLANET SIGNATURE AND ITS CHARACTERISTICS WITH LENS–SOURCE PROPER MOTION DETECTION , 2015, 1507.08914.

[30]  A. Gould Resolution of the MACHO-LMC-5 Puzzle: The Jerk-Parallax Microlens Degeneracy , 2003, astro-ph/0311548.

[31]  Jennifer C. Yee,et al.  CRITERIA FOR SAMPLE SELECTION TO MAXIMIZE PLANET SENSITIVITY AND YIELD FROM SPACE-BASED MICROLENS PARALLAX SURVEYS , 2015, 1505.00014.

[32]  Y. Yoshii,et al.  Astrometry for Determining the MACHO Mass and Trajectory , 1995 .

[33]  A. Gould,et al.  MICROLENS TERRESTRIAL PARALLAX MASS MEASUREMENTS: A RARE PROBE OF ISOLATED BROWN DWARFS AND FREE-FLOATING PLANETS , 2012, 1212.1732.

[34]  MEASURING THE REMNANT MASS FUNCTION OF THE GALACTIC BULGE , 1999, astro-ph/9906472.

[35]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[36]  K. Ulaczyk,et al.  BINARY MICROLENSING EVENT OGLE-2009-BLG-020 GIVES VERIFIABLE MASS, DISTANCE, AND ORBIT PREDICTIONS , 2011, 1101.3312.

[37]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[38]  A. Gould,et al.  MICROLENS MASSES FROM ASTROMETRY AND PARALLAX IN SPACE-BASED SURVEYS: FROM PLANETS TO BLACK HOLES , 2014, 1401.2463.

[39]  A. Einstein LENS-LIKE ACTION OF A STAR BY THE DEVIATION OF LIGHT IN THE GRAVITATIONAL FIELD. , 1936, Science.

[40]  Andrew Gould,et al.  REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S RV ∼ 2.5 EXTINCTION CURVE , 2012, 1208.1263.

[41]  Andrew Gould,et al.  Proper Motions of MACHOs , 1994 .

[42]  A. Gal-Yam,et al.  Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - V. Evidence for a wide age distribution and a complex MDF , 2012, 1211.6848.

[43]  Andrew Gould,et al.  MACHO Velocities from Satellite-based Parallaxes , 1994 .