Spins of the Supermassive Black Hole in M87: New Constraints from TeV Observations

The rapid TeV γ-ray variability detected in the well-known nearby radio galaxy M87 implies an extremely compact emission region (5-10 Schwarzschild radii) near the horizon of the supermassive black hole in the galactic center. TeV photons are affected by dilution due to interaction with the radiation field of the advection-dominated accretion flow (ADAF) around the black hole, and can thus be used to probe the innermost regions around the black hole. We calculate the optical depth of the ADAF radiation field to the TeV photons and find it strongly depends on the spin of the black hole. We find that transparent radii of 10 TeV photons are of 5RS and 13RS for the maximally rotating and nonrotating black holes, respectively. With the observations, the calculated transparent radii strongly suggest the black hole is spinning fast in the galaxy. TeV photons could be used as a powerful diagnostic for estimating black hole spins in galaxies in the future.

[1]  Chen Hu,et al.  Early Growth of Massive Black Holes in Quasars , 2007, 0712.0523.

[2]  A. Babul,et al.  Models for jet power in elliptical galaxies: a case for rapidly spinning black holes , 2006, astro-ph/0612354.

[3]  A. R. Bazer-Bachi,et al.  Fast Variability of Tera–Electron Volt γ Rays from the Radio Galaxy M87 , 2006, Science.

[4]  L. Brenneman,et al.  Constraining Black Hole Spin via X-Ray Spectroscopy , 2006, astro-ph/0608502.

[5]  L. Ho,et al.  Evidence for Rapidly Spinning Black Holes in Quasars , 2006, astro-ph/0603813.

[6]  M. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE DISTRIBUTION AND COSMIC EVOLUTION OF MASSIVE BLACK HOLE SPINS , 2004 .

[7]  R. Maiolino,et al.  Local supermassive black holes, relics of active galactic nuclei and the X-ray background , 2003, astro-ph/0311619.

[8]  Tiziana Di Matteo,et al.  Accretion onto the Supermassive Black Hole in M87 , 2002, astro-ph/0202238.

[9]  J. C. Lee,et al.  A long hard look at MCG–6-30-15 with XMM-Newton , 2002, astro-ph/0311473.

[10]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[11]  William B. Sparks,et al.  Deep 10 Micron Imaging of M87 , 2001 .

[12]  S. Molendi,et al.  XMM-EPIC observation of MCG-6-30-15: direct evidence for the extraction of energy from a spinning black hole? , 2001, astro-ph/0110520.

[13]  F. Yuan,et al.  The Role of the Outer Boundary Condition in Accretion Disk Models: Theory and Application , 2000, astro-ph/0002068.

[14]  John A. Biretta,et al.  Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole , 1999, Nature.

[15]  Cambridge,et al.  Low‐radiative‐efficiency accretion in the nuclei of elliptical galaxies , 1999, astro-ph/9905053.

[16]  S. Mineshige,et al.  Spectrum of Optically Thin Advection-dominated Accretion Flow around a Black Hole: Application to Sagittarius A* , 1997, astro-ph/9708234.

[17]  W. Sparks,et al.  The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk , 1997, astro-ph/9706252.

[18]  R. Narayan,et al.  Global Structure and Dynamics of Advection-dominated Accretion Flows around Black Holes , 1996, astro-ph/9607019.

[19]  Cambridge,et al.  The 'Quiescent' black hole in M87 , 1996, astro-ph/9610097.

[20]  Geoffrey V. Bicknell,et al.  Understanding the Kiloparsec-Scale Structure of M87 , 1996 .

[21]  R. Narayan,et al.  Advection dominated accretion: Underfed black holes and neutron stars , 1994, astro-ph/9411059.

[22]  H. Ford,et al.  HST FOS spectroscopy of M87: Evidence for a disk of ionized gas around a massive black hole , 1994 .

[23]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[24]  E. Turner,et al.  Remnants of the quasars. , 1992 .

[25]  A compact radio source in the nucleus of M87 , 1986, Nature.

[26]  D. Graham,et al.  6-cm VLBI observations of compact radio sources , 1981 .

[27]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .

[28]  J. Bardeen,et al.  Kerr Metric Black Holes , 1970, Nature.

[29]  R. Gould,et al.  Pair production in photon-photon collisions. , 1967 .