Priorities in process algebras

An operational semantics for an algebraic theory of concurrency is developed that incorporates a notion of priority into the definition of the execution of actions. An equivalence based on strong observational equivalences is defined and shown to be a congruence, and a complete axiomization is given for finite terms. Several examples highlight the novelty and usefulness of the approaches.<<ETX>>

[1]  Amir Pnueli,et al.  Linear and Branching Structures in the Semantics and Logics of Reactive Systems , 1985, ICALP.

[2]  Ed Brinksma,et al.  A tutorial on LOTOS , 1985, PSTV.

[3]  David Harel,et al.  Statecharts: A Visual Formalism for Complex Systems , 1987, Sci. Comput. Program..

[4]  Inmos Limited,et al.  Occam Programming Manual , 1984 .

[5]  Henry Ledgard,et al.  Reference Manual for the ADA® Programming Language , 1983, Springer New York.

[6]  Jan A. Bergstra,et al.  Process Algebra for Synchronous Communication , 1984, Inf. Control..

[7]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[8]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[9]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[10]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[11]  R. Smith,et al.  Department of Defense. , 2020, Military medicine.

[12]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[13]  Jan A. Bergstra,et al.  Syntax and defining equations for an interrupt mechanism in process algebra , 1985 .

[14]  Robin Milner,et al.  A Complete Inference System for a Class of Regular Behaviours , 1984, J. Comput. Syst. Sci..

[15]  Robin Milner,et al.  Calculi for Synchrony and Asynchrony , 1983, Theor. Comput. Sci..

[16]  Keith A. Bartlett,et al.  A note on reliable full-duplex transmission over half-duplex links , 1969, Commun. ACM.

[17]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..