Using atomic force microscopy nanomanipulation, we position a single Au nanoparticle near a CdSe/ZnS quantum dot to construct a hybrid nanostructure with variable geometry. The coupling between the two particles is varied in a systematic and reversible manner. The photoluminescence lifetime and blinking of the same quantum dot are measured before and after assembly of the structure. In some hybrid structures, the total lifetime is reduced from about 30 ns to well below 1 ns. This dramatic change in lifetime is accompanied by the disappearance of blinking as the nonradiative energy transfer from the CdSe/ZnS quantum dot to the Au nanoparticle becomes the dominant decay channel. Both total lifetime and photoluminescence intensity changes are well described by simple analytical calculations.