Near-optimal limited-search detection on ISI/CDMA channels and decoding of long convolutional codes

We derive an upper bound on the bit-error probability (BEP) in limited-search detection over a finite interference channel. A unified channel model is presented; this includes finite-length intersymbol interference channels and multiuser CDMA channels as two special cases. We show that the BEP of the M-algorithm (MA) is bounded from above by the sum of three terms: an upper bound on the error probability of the Viterbi (1967) algorithm (VA) detection given by Forney Jr. (1972), and upper bounds on the error probabilities of two types of erroneous decision caused by the correct path loss event. We prove that error propagation (in terms of the mean recovery step number) is finite for all finite interference channels. The convergence and asymptotic behavior of the upper bounds are studied. The results show that, if a channel satisfies certain mild conditions, all series in the bounds are convergent. One of the key results is that, for any finite interference channel satisfying certain mild conditions. the asymptotic BEP of the MA is bounded by the same upper and lower bounds (which have the same asymptotical behavior) as those for the VA if the correct path loss probability is smaller than that of the VA. Furthermore, we extend the above results to near optimally decode long convolutional codes in a short packet format (about 200-300 bits). We present a nonsorting combined M/T algorithm and showed that the M/T algorithm with M>2(/sup d/free//sup n/) and T>(d/sub free/E/sub b/)/n can near-optimally decode the code. We also propose a hierarchical decoding algorithm (HDA) to further cut down the average decoding complexity. Numerical results show that the bounds are reasonably tight. The HDA can achieve a performance within about 0.8 dB of the sphere-packing lower bound for a packet error rate of 10/sup -4/ and a packet length below 200 bits, which is the best reported decoding performance so far for block sizes from 100 to 200 bits.

[1]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[2]  Christian Schlegel,et al.  A simple way to compute the minimum distance in multiuser CDMA systems , 1997, IEEE Trans. Commun..

[3]  G. Forney,et al.  A High-Speed Sequential Decoder: Prototype Design and Test , 1971 .

[4]  G. David Forney,et al.  Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference , 1972, IEEE Trans. Inf. Theory.

[5]  Alexandra Duel-Hallen,et al.  Decorrelating decision-feedback multiuser detector for synchronous code-division multiple-access channel , 1993, IEEE Trans. Commun..

[6]  G. Ungerboeck,et al.  Adaptive Maximum-Likelihood Receiver for Carrier-Modulated Data-Transmission Systems , 1974, IEEE Trans. Commun..

[7]  David G. Messerschmitt,et al.  An upper bound on the error probability in decision-feedback equalization , 1974, IEEE Trans. Inf. Theory.

[8]  Rolf Johannesson,et al.  A fast algorithm for computing distance spectrum of convolutional codes , 1989, IEEE Trans. Inf. Theory.

[9]  Lei Wei,et al.  Synchronous DS-SSMA system with improved decorrelating decision-feedback multiuser detection , 1994 .

[10]  Alexandra Duel-Hallen,et al.  A family of multiuser decision-feedback detectors for asynchronous code-division multiple-access channels , 1995, IEEE Trans. Commun..

[11]  Sergio Verdu,et al.  Demodulation in the presence of multiuser interference: progress and misconceptions , 1997 .

[12]  F. Jelinek Fast sequential decoding algorithm using a stack , 1969 .

[13]  Sergio Verdú,et al.  Near-far resistance of multiuser detectors in asynchronous channels , 1990, IEEE Trans. Commun..

[14]  O. Collins,et al.  A comparison of known codes, random codes, and the best codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[15]  Takeshi Hashimoto A list-type reduced-constraint generalization of the Viterbi algorithm , 1987, IEEE Trans. Inf. Theory.

[16]  Gerard J. Foschini Performance bound for maximum-likelihood reception of digital data , 1975, IEEE Trans. Inf. Theory.

[17]  James L. Massey Variable-length codes and the Fano metric , 1972, IEEE Trans. Inf. Theory.

[18]  Gregory J. Pottie,et al.  A comparison of reduced complexity decoding algorithms for trellis codes , 1989, IEEE J. Sel. Areas Commun..

[19]  Rodney A. Kennedy,et al.  Channels leading to rapid error recovery for decision feedback equalizers , 1989, IEEE Trans. Commun..

[20]  John B. Anderson,et al.  Source and Channel Coding , 1991 .

[21]  Tor Aulin,et al.  On the effect of truncation length on the exact performance of a convolutional code , 1997, IEEE Trans. Inf. Theory.

[22]  G. David Forney,et al.  Convolutional Codes III. Sequential Decoding , 1974, Inf. Control..

[23]  A. Robert Calderbank,et al.  On a technique to calculate the exact performance of a convolutional code , 1995, IEEE Trans. Inf. Theory.

[24]  John B. Anderson,et al.  Limited search trellis decoding of convolutional codes , 1989, IEEE Trans. Inf. Theory.

[25]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[26]  Stanley J. Simmons,et al.  Breadth-first trellis decoding with adaptive effort , 1990, IEEE Trans. Commun..

[27]  G. David Forney Lower Bounds on Error Probability in the Presence of Large Intersymbol Interference , 1972, IEEE Trans. Commun..

[28]  Rolf Johannesson,et al.  Systematic Feed-Forward Convolutional Encoders Are Better than Other Encoders with an M-Algorithm Decoder , 1998, IEEE Trans. Inf. Theory.

[29]  Robert G. Gallager,et al.  Discrete Stochastic Processes , 1995 .

[30]  Lei Wei,et al.  Synchronous DS-SSMA with improved decorrelating decision-feedback multiuser detection , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[31]  David Haccoun,et al.  Bidirectional breadth-first algorithms for the decoding of convolutional codes , 1993, IEEE Trans. Commun..

[32]  Robert Mario Fano,et al.  A heuristic discussion of probabilistic decoding , 1963, IEEE Trans. Inf. Theory.

[33]  John B. Anderson,et al.  Sequential Coding Algorithms: A Survey and Cost Analysis , 1984, IEEE Trans. Commun..

[34]  Shahid U. H. Qureshi,et al.  Reduced-state sequence estimation for coded modulation of intersymbol interference channels , 1989, IEEE J. Sel. Areas Commun..

[35]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[36]  Knud J. Larsen Comments on 'An efficient algorithm for computing free distance' by Bahl, L., et al , 1973, IEEE Trans. Inf. Theory.

[37]  Daniel J. Costello,et al.  A distance spectrum interpretation of turbo codes , 1996, IEEE Trans. Inf. Theory.

[38]  Alexandra Duel-Hallen,et al.  Delayed decision-feedback sequence estimation , 1989, IEEE Trans. Commun..

[39]  Lalit R. Bahl,et al.  An efficient algorithm for computing free distance (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[40]  Daniel J. Costello,et al.  Nonsystematic convolutional codes for sequential decoding in space applications , 1971, IEEE Transactions on Communication Technology.

[41]  T. Aulin Optimal Trellis Decoding at Given Complexity , 1993, Proceedings. IEEE International Symposium on Information Theory.

[42]  Evangelos Eleftheriou,et al.  Decoding of trellis-encoded signals in the presence of intersymbol interference and noise , 1989, IEEE Trans. Commun..

[43]  A. M. de Oliveira Duarte,et al.  Error propagation in decision feedback receivers , 1985 .

[44]  R. Johannesson,et al.  Upper bounds on the probability of the correct path loss for list decoding of fixed convolutional codes , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[45]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[46]  John B. Anderson,et al.  Reduced-state sequence detection with convolutional codes , 1994, IEEE Trans. Inf. Theory.

[47]  Lars K. Rasmussen,et al.  A near ideal noise whitening filter for an asynchronous time-varying CDMA system , 1996, IEEE Trans. Commun..

[48]  Kaiping Li,et al.  Bidirectional Sequential Decoding , 1993, Proceedings. IEEE International Symposium on Information Theory.

[49]  Lars K. Rasmussen,et al.  Near optimum tree-search detection schemes for bit-synchronous multiuser CDMA systems over Gaussian and two-path Rayleigh-fading channels , 1997, IEEE Trans. Commun..

[50]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .