Bipanconnectivity of balanced hypercubes

The balanced hypercube, proposed by Wu and Huang, is a variant of the hypercube network. In this paper, paths of various lengths are embedded into balanced hypercubes. A bipartite graph G is bipanconnected if, for two arbitrary nodes x and y of G with distance d(x,y), there exists a path of length l between x and y for every integer l with d(x,y)@?l@?|V(G)|-1 and l-d(x,y)=0 (mod 2). We prove that the n-dimensional balanced hypercube BH"n is bipanconnected for all n>=1. This result is stronger than that obtained by Xu et al. which shows that the balanced hypercube is edge-bipancyclic and Hamiltonian laceable.

[1]  Sun-Yuan Hsieh,et al.  Panconnectivity and edge-pancyclicity of k-ary n-cubes , 2009 .

[2]  Jun-Ming Xu,et al.  Edge-pancyclicity and Hamiltonian laceability of the balanced hypercubes , 2007, Appl. Math. Comput..

[3]  Jie Wu,et al.  AREA EFFICIENT LAYOUT OF BALANCED HYPERCUBES , 1995 .

[4]  Sun-Yuan Hsieh,et al.  Conditional edge-fault Hamiltonicity of augmented cubes , 2010, Inf. Sci..

[5]  Jie Wu,et al.  The Balanced Hypercube: A Cube-Based System for Fault-Tolerant Applications , 1997, IEEE Trans. Computers.

[6]  Xiao-Dong Hu,et al.  Edge-bipancyclicity of star graphs under edge-fault tolerant , 2006, Appl. Math. Comput..

[7]  Sun-Yuan Hsieh,et al.  Conditional Edge-Fault Hamiltonicity of Matching Composition Networks , 2009, IEEE Transactions on Parallel and Distributed Systems.

[8]  Frank Thomson Leighton Introduction to parallel algorithms and architectures: arrays , 1992 .

[9]  Sun-Yuan Hsieh,et al.  Pancyclicity and bipancyclicity of conditional faulty folded hypercubes , 2010, Inf. Sci..

[10]  Iain A. Stewart,et al.  Bipanconnectivity and Bipancyclicity in k-ary n-cubes , 2009, IEEE Transactions on Parallel and Distributed Systems.

[11]  Xu Jun-ming Edge-fault-tolerant bipanconnectivity of hypercubes , 2008 .

[12]  Ming-Chien Yang Path embedding in star graphs , 2009, Appl. Math. Comput..

[13]  Biing-Feng Wang,et al.  Constructing Edge-Disjoint Spanning Trees in Product Networks , 2003, IEEE Trans. Parallel Distributed Syst..

[14]  Yi Pan,et al.  Optimal fault-tolerant embedding of paths in twisted cubes , 2007, J. Parallel Distributed Comput..

[15]  Xiaohua Jia,et al.  Optimal path embedding in crossed cubes , 2005, IEEE Transactions on Parallel and Distributed Systems.

[16]  Jun-Ming Xu,et al.  Paths in Möbius cubes and crossed cubes , 2006, Inf. Process. Lett..

[17]  Jimmy J. M. Tan,et al.  Hamiltonian circuit and linear array embeddings in faulty k-ary n-cubes , 2007, J. Parallel Distributed Comput..

[18]  Jou-Ming Chang,et al.  Panconnectivity, fault-tolerant hamiltonicity and hamiltonian-connectivity in alternating group graphs , 2004, Networks.

[19]  Selim G. Akl Parallel computation: models and methods , 1997 .

[20]  Jimmy J. M. Tan,et al.  Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes , 2003, Inf. Process. Lett..

[21]  Jywe-Fei Fang The bipanconnectivity and m-panconnectivity of the folded hypercube , 2007, Theor. Comput. Sci..

[22]  Cauligi S. Raghavendra,et al.  Embedding of Rings and Meshes onto Faulty Hypercubes Using Free Dimensions , 1994, IEEE Trans. Computers.

[23]  Jimmy J. M. Tan,et al.  Fault hamiltonicity and fault hamiltonian connectivity of the arrangement graphs , 2004, IEEE Transactions on Computers.

[24]  Bella Bose,et al.  Fault-Tolerant Ring Embedding in de Bruijn Networks , 1993, IEEE Trans. Computers.

[25]  Jun-Ming Xu,et al.  Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes , 2007, Parallel Comput..

[26]  Sun-Yuan Hsieh,et al.  Pancyclicity of Restricted Hypercube-Like Networks under the Conditional Fault Model , 2010, SIAM J. Discret. Math..

[27]  Jie Wu,et al.  Balanced Hypercubes , 1992, ICPP.

[28]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[29]  Myung M. Bae,et al.  Edge Disjoint Hamiltonian Cycles in k-Ary n-Cubes and Hypercubes , 2003, IEEE Trans. Computers.

[30]  Jung-Heum Park,et al.  Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements , 2007, Theor. Comput. Sci..