Kinetics of ZnMoO4·0.8H2O and α-ZnMoO4 Formation at Ultrasonic Treatment of ZnO and MoO3 Mixture

[1]  S. K. Rout,et al.  Structural and dielectric properties of Cu-doped α-ZnMoO4 ceramic system for enhanced green light emission and potential microwave applications , 2020, Journal of Materials Science: Materials in Electronics.

[2]  P. K. Dwivedi,et al.  Electrochemical performance of pre-lithiated ZnMoO4 and r-GO@ZnMoO4 composite anode for lithium-ion battery application , 2020 .

[3]  W. Paraguassu,et al.  Vibrational spectroscopy study and ab initio calculation on ZnMoO4 system , 2020 .

[4]  Wei Zhang,et al.  Realization of superior electrochemical performances for ZnMoO4 anode material through the construction strategy of 3D flower-like single crystalline , 2020 .

[5]  L. Innocentini-Mei,et al.  Synthesis of copper(II)‐zinc‐molybdenum compounds as smoke suppressants for PVC compositions , 2020, Fire and Materials.

[6]  Rongjie Yang,et al.  The Effect of Different Smoke Suppressants with APP for Enhancing the Flame Retardancy and Smoke Suppression on Vinyl Ester Resin , 2020 .

[7]  N. Klyui,et al.  Origin of luminescence in ZnMoO4 crystals: Insights from spectroscopic studies and electronic structure calculations , 2019, Journal of Luminescence.

[8]  T. Pang,et al.  Highly efficient green upconversion luminescence of ZnMoO4:Yb3+/Er3+/Li+ for accurate temperature sensing. , 2019, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[9]  V. Zazhigalov,et al.  The Effect of Ultrasonic Treatment on the Physical–Chemical Properties of the ZnO/MoO3 System , 2018, Springer Proceedings in Physics.

[10]  Z. Sawłowicz,et al.  The Effect of Mechanochemical and Ultrasonic Treatments on the Properties of Composition CeO2–MoO3 = 1:1 , 2018, Springer Proceedings in Physics.

[11]  S. Rakass,et al.  Preparation and Characterization of α-Zinc Molybdate Catalyst: Efficient Sorbent for Methylene Blue and Reduction of 3-Nitrophenol , 2018, Molecules.

[12]  D. Pinjari,et al.  A smart coating established with encapsulation of Zinc Molybdate centred nanocontainer for active corrosion protection of mild steel: release kinetics of corrosion inhibitor , 2018 .

[13]  Y. Zhuang,et al.  Phase‐ and Morphology‐Controlled Synthesis of Zinc Molybdate for Excellent Photocatalytic Properties , 2017 .

[14]  Jianfeng Huang,et al.  Sodium carboxyl methyl cellulose and polyacrylic acid binder with enhanced electrochemical properties for ZnMoO4·0.8H2O anode in lithium ion batteries , 2017 .

[15]  L. Kuznetsova,et al.  INFLUENCE OF ULTRASONIC TREATMENT ON PROPERTIES OF ZnO-MoO3 OXIDE SYSTEM , 2017 .

[16]  I. Moroz,et al.  Temperature dependence of luminescence intensity in ZnMoO4 crystals , 2017 .

[17]  Z. Sawłowicz,et al.  Effect of Ultrasonic Treatment on Formation of Nanodimensional Structures in ZnO–MoO3 System , 2017, Theoretical and Experimental Chemistry.

[18]  Long Yang,et al.  Growth of ZnMoO4 nanowires via vapor deposition in air , 2017 .

[19]  W. Jin,et al.  Enhanced electrochemical performance of ZnMoO4/reduced graphene oxide composites as anode materials for lithium-ion batteries , 2016 .

[20]  K. Wieczorek-Ciurowa,et al.  Mechanochemical Synthesis of Nanodispersed Compounds in the ZnO-MoO3 System , 2016, Theoretical and Experimental Chemistry.

[21]  M. Zbair,et al.  Rietveld refinements, impedance spectroscopy and phase transition of the polycrystalline ZnMoO4 ceramics , 2015 .

[22]  B. Bhanvase,et al.  Ultrasound assisted synthesis of PANI/ZnMoO4 nanocomposite for simultaneous improvement in anticorrosion, physico-chemical properties and its application in gas sensing. , 2015, Ultrasonics sonochemistry.

[23]  T. Thongtem,et al.  Effect of medium solvent ratios on morphologies and optical properties of α-ZnMoO4, β-ZnMoO4 and ZnMoO4·0.8H2O crystals synthesized by microwave-hydrothermal/solvothermal method , 2014 .

[24]  F. Ferri,et al.  Optical, luminescence and thermal properties of radiopure ZnMoO4 crystals used in scintillating bolometers for double beta decay search , 2013 .

[25]  M. Salavati‐Niasari,et al.  Controllable synthesis of novel zinc molybdate rod-like nanostructures via simple surfactant-free precipitation route , 2013 .

[26]  E. Longo,et al.  β-ZnMoO4 microcrystals synthesized by the surfactant-assisted hydrothermal method: Growth process and photoluminescence properties , 2012 .

[27]  J. Beeman,et al.  ZnMoO4: a promising bolometer for neutrinoless double beta decay searches , 2012, 1202.0238.

[28]  E. Lalik,et al.  Kinetic analysis of reduction of MoO3 to MoO2 , 2011 .

[29]  Baibiao Huang,et al.  Synthesis, morphology and phase transition of the zinc molybdates ZnMoO4·0.8H2O/α-ZnMoO4/ZnMoO4 by hydrothermal method , 2010 .

[30]  Jing Sun,et al.  A general precipitation strategy for large-scale synthesis of molybdate nanostructures. , 2008, Chemical communications.

[31]  M. Grzywa,et al.  Synthesis, characterization and crystal structure of zinc dimolybdate pentahydrate ZnMo{sub 2}O{sub 7}.5H{sub 2}O , 2007 .

[32]  M. J. Sims,et al.  Heavy-metal molybdates. I. Crystal structure of a basic zinc molybdate, NaZn2OH(H2O)(MoO4)2 , 1976 .