Frequency conversion of structured light

Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.

[1]  P. Kumar,et al.  Quantum frequency conversion. , 1990, Optics letters.

[2]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[3]  G. Guo,et al.  Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity. , 2014, Optics express.

[4]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[5]  Guang-Can Guo,et al.  Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals , 2014, Scientific Reports.

[6]  M Lassen,et al.  Spatial mode discrimination using second harmonic generation. , 2007, Optics express.

[7]  Jeppe Seidelin Dam,et al.  Theory for upconversion of incoherent images. , 2012, Optics express.

[8]  G. Guo,et al.  Single-photon-level quantum image memory based on cold atomic ensembles , 2013, Nature Communications.

[9]  F. Wong,et al.  Polarization-independent frequency conversion for quantum optical communication , 2006 .

[10]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[11]  Eric Lantz,et al.  Transfer function of spatial frequencies in parametric image amplification : experimental analysis and application to picosecond spatial filtering , 1995 .

[12]  M J Padgett,et al.  Poincaré-sphere equivalent for light beams containing orbital angular momentum. , 1999, Optics letters.

[13]  L. Torner,et al.  Twisted Photons: Applications of Light with Orbital Angular Momentum , 2011 .

[14]  Eric Lantz,et al.  Parametric amplification of a polychromatic image , 1996, Other Conferences.

[15]  F. Devaux,et al.  Phase sensitive parametric amplification of optical vortex beams , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[16]  Simpson,et al.  Second-harmonic generation and the orbital angular momentum of light. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[17]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[18]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[19]  K. Ogilvie,et al.  Infrared upconversion for astronomical applications. , 1975, Applied optics.

[20]  Wei Zhang,et al.  Quantum storage of orbital angular momentum entanglement in an atomic ensemble. , 2014, Physical review letters.

[21]  A. Nicolas,et al.  A quantum memory for orbital angular momentum photonic qubits , 2013, Nature Photonics.

[22]  G-C Guo,et al.  Linear up-conversion of orbital angular momentum. , 2012, Optics letters.

[23]  Anton Zeilinger,et al.  Polarization-entanglement-conserving frequency conversion of photons , 2011, 1106.1867.

[24]  R. Trebino,et al.  Optical-parametric-amplification imaging of complex objects , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[25]  Paul G. Kwiat,et al.  High efficiency single photon detection via frequency up-conversion , 2004 .

[26]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[27]  K. Stetson,et al.  Progress in optics , 1980, IEEE Journal of Quantum Electronics.

[28]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[29]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[30]  Jeppe Seidelin Dam,et al.  Room-temperature mid-infrared single-photon spectral imaging , 2012, Nature Photonics.

[31]  Yan-qing Lu,et al.  Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching , 2013 .

[32]  N. Brunner,et al.  Experimental estimation of the dimension of classical and quantum systems , 2011, Nature Physics.

[33]  I. Walmsley,et al.  Engineering Nonlinear Optic Sources of Photonic Entanglement , 2011 .

[34]  J. P. Torres,et al.  Quantum spiral bandwidth of entangled two-photon states , 2003 .

[35]  Experimental up-conversion of images , 2012, 1203.6132.

[36]  Robert Fickler,et al.  Quantum Entanglement of High Angular Momenta , 2012, Science.

[37]  Jeppe Seidelin Dam,et al.  Enhanced 2D-image upconversion using solid-state lasers. , 2009, Optics express.

[38]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[39]  Anton Zeilinger,et al.  Quantum imaging with undetected photons , 2014, Nature.

[40]  Stephen M. Barnett,et al.  Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces , 2010 .

[41]  Kolobov,et al.  Noiseless amplification of optical images. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[42]  Ebrahim Karimi,et al.  Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement , 2014, 1401.3512.

[43]  Guang-Can Guo,et al.  Orbital angular momentum photonic quantum interface , 2016, Light, science & applications.

[44]  S. Pereira,et al.  Nanostep height measurement via spatial mode projection. , 2014, Optics letters.

[45]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[46]  Ebrahim Karimi,et al.  Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. , 2013, Optics letters.

[47]  Y. Shih,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical Review Letters.

[48]  J. E. Midwinter,et al.  IMAGE CONVERSION FROM 1.6 μ TO THE VISIBLE IN LITHIUM NIOBATE , 1968 .

[49]  Paul G. Kwiat,et al.  Quantum transduction via frequency upconversion (Invited) , 2007 .

[50]  Jeppe Seidelin Dam,et al.  High-resolution two-dimensional image upconversion of incoherent light. , 2010, Optics letters.

[51]  Lijun Ma,et al.  Single photon frequency up-conversion and its applications , 2011, Optical Engineering + Applications.

[52]  H. Epps,et al.  Astronomical demonstration of an infrared upconverter , 1974, Nature.

[53]  D. Grier A revolution in optical manipulation , 2003, Nature.

[54]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[55]  Jonathan Leach,et al.  Direct measurement of a 27-dimensional orbital-angular-momentum state vector , 2013, Nature Communications.

[56]  Fabio Sciarrino,et al.  Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory , 2015, Nature Communications.

[57]  Premjeet Kumar,et al.  NOISELESS OPTICAL AMPLIFICATION OF IMAGES , 1999 .

[58]  J. Midwinter,et al.  Image conversion from 1.6 µm to the visible in lithium niobate , 1968 .

[59]  B. Shi,et al.  Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals. , 2014, Optics express.

[60]  Miles J. Padgett,et al.  IV The Orbital Angular Momentum of Light , 1999 .

[61]  Yan Li,et al.  Sum frequency generation with two orbital angular momentum carrying laser beams , 2015 .

[62]  K. Dholakia,et al.  Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes , 1997 .