Insight into the unwrapping of the dinucleosome.

Dynamics of nucleosomes, the building blocks of chromatin, has crucial effects on the expression, replication and repair of genomes in eukaryotes. Beside the constant movements of nucleosomes by thermal fluctuations, ATP-dependent chromatin remodelling complexes cause their active displacements. Here we propose a theoretical analysis of dinucleosome wrapping and unwrapping dynamics in the presence of an external force. We explore the energy landscape and configurations of a dinucleosome in different unwrapped states. Moreover, using a dynamical Monte-Carlo simulation algorithm, we demonstrate the dynamical features of the system such as the unwrapping force for partial and full wrapping processes. Furthermore, we show that in the short length of linker DNA (∼10-90 bp), asymmetric unwrapping occurs. These findings could shed some light on chromatin dynamics and gene accessibility.

[1]  M. Halić,et al.  Histone octamer rearranges to adapt to DNA unwrapping , 2017, Nature Structural & Molecular Biology.

[2]  L. Pollack,et al.  Asymmetric unwrapping of nucleosomal DNA propagates asymmetric opening and dissociation of the histone core , 2016, Proceedings of the National Academy of Sciences.

[3]  P. Cramer,et al.  Nucleosomal arrangement affects single-molecule transcription dynamics , 2016, Proceedings of the National Academy of Sciences.

[4]  F. Mohammad-Rafiee,et al.  Elastic model for dinucleosome structure and energy. , 2016, Physical review. E.

[5]  J. van Noort,et al.  Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers , 2015, Nucleic acids research.

[6]  T. Ha,et al.  Asymmetric Unwrapping of Nucleosomes under Tension Directed by DNA Local Flexibility , 2015, Cell.

[7]  Gaurav Arya,et al.  Torsional behavior of chromatin is modulated by rotational phasing of nucleosomes , 2014, Nucleic acids research.

[8]  T. van der Heijden,et al.  Characterization of nucleosome unwrapping within chromatin fibers using magnetic tweezers. , 2014, Biophysical journal.

[9]  L. Pollack,et al.  Revealing transient structures of nucleosomes as DNA unwinds , 2014, Nucleic acids research.

[10]  Karolin Luger,et al.  Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss , 2013, Nature Communications.

[11]  L. Regan,et al.  Kinetics and thermodynamics of phenotype: unwinding and rewinding the nucleosome. , 2012, Journal of molecular biology.

[12]  H. Schiessel,et al.  Nucleosome dynamics between tension-induced states. , 2012, Biophysical journal.

[13]  Elena F. Koslover,et al.  Tension-dependent structural deformation alters single-molecule transition kinetics , 2011, Proceedings of the National Academy of Sciences.

[14]  Carlos Bustamante,et al.  Nucleosomal Fluctuations Govern the Transcription Dynamics of RNA Polymerase II , 2009, Science.

[15]  C. Logie,et al.  Multiple Aspects of ATP-Dependent Nucleosome Translocation by RSC and Mi-2 Are Directed by the Underlying DNA Sequence , 2009, PloS one.

[16]  H. Schiessel,et al.  Active nucleosome displacement: a theoretical approach. , 2009, Biophysical journal.

[17]  J. van Noort,et al.  Hidden Markov analysis of nucleosome unwrapping under force. , 2009, Biophysical journal.

[18]  Colin Logie,et al.  Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber , 2009, Nature Structural &Molecular Biology.

[19]  Michelle D. Wang,et al.  High resolution dynamic mapping of histone-DNA interactions in a nucleosome , 2008, Nature Structural &Molecular Biology.

[20]  Andrew J. Spakowitz,et al.  Effect of force on mononucleosomal dynamics , 2006, Proceedings of the National Academy of Sciences.

[21]  S. Khorasanizadeh The Nucleosome From Genomic Organization to Genomic Regulation , 2004, Cell.

[22]  H. Schiessel,et al.  DNA spools under tension. , 2003, Physical review letters.

[23]  T. Richmond,et al.  The structure of DNA in the nucleosome core , 2003, Nature.

[24]  Andrew Flaus,et al.  Mechanisms for nucleosome mobilization. , 2003, Biopolymers.

[25]  Michelle D. Wang,et al.  Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Jan Greve,et al.  Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers , 2001, Nature Structural Biology.

[27]  Anatoly B. Kolomeisky,et al.  Periodic sequential kinetic models with jumping, branching and deaths , 2000 .

[28]  J. Widom,et al.  Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. , 2000, Journal of molecular biology.

[29]  C. Bustamante,et al.  Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Widom,et al.  Chromatin: The nucleosome unwrapped , 1997, Current Biology.

[31]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[32]  P. Chavrier,et al.  Molecular Biology of the Cell , 1990, Color Atlas of Clinical Hematology.

[33]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[34]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[35]  Pericoli,et al.  Erratum: Current drive at plasma densities required for thermonuclear reactors (vol 1, pg 55, 2010) , 2013 .

[36]  W. Marsden I and J , 2012 .

[37]  C. Bustamante,et al.  Rapid spontaneous accessibility of nucleosomal DNA , 2005, Nature Structural &Molecular Biology.