Diffusion-induced stress of electrode particles with spherically isotropic elastic properties in lithium-ion batteries

[1]  H. Huang,et al.  Critical lithiation for C-rate dependent mechanical stresses in LiFePO4 , 2015, Journal of Solid State Electrochemistry.

[2]  Xu Guo,et al.  A chemo-mechanical model of lithiation in silicon , 2014 .

[3]  Amartya Mukhopadhyay,et al.  Deformation and stress in electrode materials for Li-ion batteries , 2014 .

[4]  Huajian Gao,et al.  Critical film thickness for fracture in thin-film electrodes on substrates in the presence of interfacial sliding , 2013 .

[5]  Ting Zhu,et al.  Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries , 2013 .

[6]  Feng Gao,et al.  Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries , 2013 .

[7]  Z. Suo,et al.  Fracture and debonding in lithium-ion batteries with electrodes of hollow core–shell nanostructures , 2012 .

[8]  F. Gao,et al.  A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries , 2012 .

[9]  V. Shenoy,et al.  Location- and Orientation-Dependent Progressive Crack Propagation in Cylindrical Graphite Electrode Particles , 2011 .

[10]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses , 2011 .

[11]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[12]  M. Verbrugge,et al.  Cycle-life model for graphite-LiFePO 4 cells , 2011 .

[13]  V. Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[14]  Yang-Tse Cheng,et al.  Effects of Concentration-Dependent Elastic Modulus on Diffusion-Induced Stresses for Battery Applications , 2010 .

[15]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes , 2010 .

[16]  Mark W. Verbrugge,et al.  Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation , 2009 .

[17]  M. Verbrugge,et al.  The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles , 2008 .

[18]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[19]  Robert E. Newnham,et al.  Properties of Materials: Anisotropy, Symmetry, Structure , 2005 .

[20]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[21]  Tungyang Chen Thermoelastic properties and conductivity of composites reinforced by spherically anisotropic particles , 1993 .

[22]  Y. Tanigawa,et al.  Transient thermal stresses of solid and hollow spheres with spherically isotropic thermoelastic properties , 1984 .

[23]  S. Prussin,et al.  Generation and Distribution of Dislocations by Solute Diffusion , 1961 .

[24]  Hsiao-Ying Shadow Huang,et al.  Dislocation Based Stress Developments in Lithium-Ion Batteries , 2012 .

[25]  Huajian Gao,et al.  Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration , 2011 .

[26]  Weiqiu Chen,et al.  Elasticity of transversely isotropic materials , 2006 .

[27]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .