Polymer Acceptor Based on B←N Units with Enhanced Electron Mobility for Efficient All-Polymer Solar Cells.

We demonstrate that polymer electron acceptors with excellent all-polymer solar-cell (all-PSC) device performance can be developed from polymer electron donors by using B←N units. By alleviating the steric hindrance effect of the bulky pendant moieties on the conjugated polymers that contain B←N units, the π-π stacking distance of polymer backbones is decreased and the electron mobility is consequently enhanced by nearly two orders of magnitude. As a result, the power conversion efficiency of all-PSCs with the polymer acting as the electron acceptor is greatly improved from 0.12 % to 5.04 %. This PCE value is comparable to that of the best all-PSCs with state-of-the-art polymer acceptors.

[1]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[2]  Zhishan Bo,et al.  6,7-dialkoxy-2,3-diphenylquinoxaline based conjugated polymers for solar cells with high open-circuit voltage , 2013, Chinese Journal of Polymer Science.

[3]  S. Jenekhe,et al.  n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells. , 2015, Journal of the American Chemical Society.

[4]  Bernard Kippelen,et al.  A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. , 2007, Journal of the American Chemical Society.

[5]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[6]  J. Behrends,et al.  Correlated Donor/Acceptor Crystal Orientation Controls Photocurrent Generation in All‐Polymer Solar Cells , 2014 .

[7]  Long Ye,et al.  Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45% , 2014 .

[8]  Samson A Jenekhe,et al.  7.7% Efficient All‐Polymer Solar Cells , 2015, Advanced materials.

[9]  Jun Liu,et al.  Development of a donor polymer using a B ← N unit for suitable LUMO/HOMO energy levels and improved photovoltaic performance , 2015 .

[10]  Jianqi Zhang,et al.  All‐Polymer Solar Cells Based on Absorption‐Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27% , 2016, Advanced materials.

[11]  Seth R. Marder,et al.  n‐Type Organic Semiconductors in Organic Electronics , 2010, Advanced materials.

[12]  Todd B. Marder,et al.  Die Borchemie leuchtet: optische Eigenschaften von Molekülen und Polymeren C.D.E. dankt EPSRC und Syngenta für Postgraduiertenstipendien und T.B.M. der University of Durham für Unterstützung sowie Prof. Dr. K. Tamao für einen Vorabdruck von Lit. 32. , 2002 .

[13]  H. Tong,et al.  Synthesis, characterization and solar cell application of a D-A copolymer with cyclopentadithiophene and fluorene as donor units , 2013, Chinese Journal of Polymer Science.

[14]  H. Ade,et al.  Manipulating Aggregation and Molecular Orientation in All‐Polymer Photovoltaic Cells , 2015, Advanced materials.

[15]  G. Erker,et al.  Electronic tuning of thiazolyl-capped π-conjugated compounds via a coordination/cyclization protocol with B(C6F5)3. , 2010, Organic letters.

[16]  Kazuo Tanaka,et al.  Advanced luminescent materials based on organoboron polymers. , 2012, Macromolecular rapid communications.

[17]  Z. Xie,et al.  Functionalized graphene quantum dots as a novel cathode interlayer of polymer solar cells , 2016 .

[18]  Yingli Rao,et al.  Four-coordinate organoboron compounds with a π-conjugated chelate ligand for optoelectronic applications. , 2011, Inorganic chemistry.

[19]  P. Liu,et al.  High‐Efficiency All‐Polymer Solar Cells Based on a Pair of Crystalline Low‐Bandgap Polymers , 2014, Advanced materials.

[20]  N. Koch,et al.  Influence of Aggregation on the Performance of All‐Polymer Solar Cells Containing Low‐Bandgap Naphthalenediimide Copolymers , 2012 .

[21]  Jianhui Hou,et al.  Realizing over 10% efficiency in polymer solar cell by device optimization , 2015, Science China Chemistry.

[22]  Chuandong Dou,et al.  A pentacoordinate boron-containing π-electron system with Cl-B-Cl three-center four-electron bonds. , 2013, Journal of the American Chemical Society.

[23]  J. Pei,et al.  BN heterosuperbenzenes: synthesis and properties. , 2015, Chemistry.

[24]  Yu-Shan Cheng,et al.  Fullerene Derivative‐Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low‐Bandgap Polymer (PTB7‐Th) for High Performance , 2013, Advanced materials.

[25]  Yue Wang,et al.  2-(2-Hydroxyphenyl)benzimidazole-based four-coordinate boron-containing materials with highly efficient deep-blue photoluminescence and electroluminescence. , 2015, Inorganic chemistry.

[26]  Chuandong Dou,et al.  A boron-containing PAH as a substructure of boron-doped graphene. , 2012, Angewandte Chemie.

[27]  Bumjoon J. Kim,et al.  Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation. , 2015, Journal of the American Chemical Society.

[28]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[29]  Antonio Facchetti,et al.  Polymer donor–polymer acceptor (all-polymer) solar cells , 2013 .

[30]  X. Zhan,et al.  Electron transporting semiconducting polymers in organic electronics. , 2011, Chemical Society reviews.

[31]  Cheng Wang,et al.  Flexible, highly efficient all-polymer solar cells , 2015, Nature Communications.

[32]  Di Li,et al.  Four-coordinate organoboron compounds for organic light-emitting diodes (OLEDs). , 2013, Chemical Society reviews.

[33]  Wendimagegn Mammo,et al.  25th Anniversary Article: Isoindigo‐Based Polymers and Small Molecules for Bulk Heterojunction Solar Cells and Field Effect Transistors , 2014, Advanced materials.

[34]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[35]  Feng Liu,et al.  Fluoro‐Substituted n‐Type Conjugated Polymers for Additive‐Free All‐Polymer Bulk Heterojunction Solar Cells with High Power Conversion Efficiency of 6.71% , 2015, Advanced materials.

[36]  Xiaojing Long,et al.  An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells. , 2016, Angewandte Chemie.

[37]  Yongfang Li Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. , 2012, Accounts of chemical research.

[38]  S. Jenekhe,et al.  All‐Polymer Bulk Heterojuction Solar Cells with 4.8% Efficiency Achieved by Solution Processing from a Co‐Solvent , 2014, Advanced materials.

[39]  Christopher D. Entwistle,et al.  Boron chemistry lights the way: optical properties of molecular and polymeric systems. , 2002, Angewandte Chemie.

[40]  C. Chochos,et al.  Rational design on n-type organic materials for high performance organic photovoltaics , 2013 .

[41]  J. Fréchet,et al.  Polymer‐Fulleren‐Solarzellen , 2008 .

[42]  Alberto Salleo,et al.  High Performance All‐Polymer Solar Cell via Polymer Side‐Chain Engineering , 2014, Advanced materials.

[43]  Luping Yu,et al.  Synthesis and Search for Design Principles of New Electron Accepting Polymers for All-Polymer Solar Cells , 2014 .

[44]  T. S. Sorensen,et al.  10a-aza-10b-borapyrenes: heterocyclic analogues of pyrene with internalized BN moieties. , 2007, Angewandte Chemie.

[45]  H. Tian,et al.  Dithienocarbazole and Isoindigo based Amorphous Low Bandgap Conjugated Polymers for Efficient Polymer Solar Cells , 2014, Advanced materials.

[46]  Luping Yu,et al.  Recent Advances in Bulk Heterojunction Polymer Solar Cells. , 2015, Chemical reviews.

[47]  A. Wakamiya,et al.  Intramolecular B-N coordination as a scaffold for electron-transporting materials: synthesis and properties of boryl-substituted thienylthiazoles. , 2006, Angewandte Chemie.

[48]  Daisuke Mori,et al.  Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7% , 2014 .

[49]  J. Pei,et al.  A straightforward strategy toward large BN-embedded π-systems: synthesis, structure, and optoelectronic properties of extended BN heterosuperbenzenes. , 2014, Journal of the American Chemical Society.

[50]  Kazuhito Hashimoto,et al.  Control of Miscibility and Aggregation Via the Material Design and Coating Process for High‐Performance Polymer Blend Solar Cells , 2013, Advanced materials.

[51]  G. Ulrich,et al.  Luminescent materials: locking π-conjugated and heterocyclic ligands with boron(III). , 2014, Angewandte Chemie.

[52]  Robert P. H. Chang,et al.  Morphology‐Performance Relationships in High‐Efficiency All‐Polymer Solar Cells , 2014 .

[53]  Bumjoon J. Kim,et al.  High‐Performance All‐Polymer Solar Cells Via Side‐Chain Engineering of the Polymer Acceptor: The Importance of the Polymer Packing Structure and the Nanoscale Blend Morphology , 2015, Advanced materials.

[54]  F. Jäkle Advances in the synthesis of organoborane polymers for optical, electronic, and sensory applications. , 2010, Chemical reviews.

[55]  Z. Xie,et al.  Developing conjugated polymers with high electron affinity by replacing a C-C unit with a B←N unit. , 2015, Angewandte Chemie.

[56]  Weiwei Li,et al.  Polymer Solar Cells with Diketopyrrolopyrrole Conjugated Polymers as the Electron Donor and Electron Acceptor , 2014, Advanced materials.

[57]  M. Wienk,et al.  High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. , 2013, Angewandte Chemie.

[58]  Thuc‐Quyen Nguyen,et al.  Color tuning in polymer light-emitting diodes with Lewis acids. , 2012, Angewandte Chemie.

[59]  Raymond Ziessel,et al.  Lumineszierende Materialien: Fixierung von π‐konjugierten und heterocyclischen Liganden mit Bor(III) , 2014 .