Influence of MWCNT aspect ratio on the rheological, electrical, electromagnetic shielding, and mechanical properties of polycarbonate melt mixed nanocomposites

[1]  M. C. Rezende,et al.  Synergistic effect of adding graphene nanoplates and carbon nanotubes in polycarbonate/acrylonitrile‐styrene‐butadiene copolymer blend , 2022, Journal of Applied Polymer Science.

[2]  R. Pal,et al.  Tailoring of EMI shielding properties of polyaniline with MWCNTs embedment in X-band (8.2–12.4 GHz) , 2022, Journal of Physics and Chemistry of Solids.

[3]  K. Lafdi,et al.  The Effect of Agglomeration on the Electrical and Mechanical Properties of Polymer Matrix Nanocomposites Reinforced with Carbon Nanotubes , 2022, Polymers.

[4]  Ajith Ramachandran,et al.  Thin and efficient EMI shielding materials from binary thermoplastic blend nanocomposites , 2022, Polymers for Advanced Technologies.

[5]  X. Jia,et al.  Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: A review , 2022, Composites Part B: Engineering.

[6]  F. R. Passador,et al.  Influence of blending protocol on the mechanical, rheological, and electromagnetic properties of PC / ABS / ABS‐ g ‐MAH blend‐based MWCNT nanocomposites , 2021, Journal of Applied Polymer Science.

[7]  N. Manikandan,et al.  Carbon nanotubes and their properties-The review , 2021 .

[8]  Yanfei Xu,et al.  A mini review on thermally conductive polymers and polymer-based composites , 2021 .

[9]  D. Panda,et al.  A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application , 2021, Materials Science and Engineering: B.

[10]  M. Monti,et al.  Dielectric Spectroscopy of PP/MWCNT Nanocomposites: Relationship with Crystalline Structure and Injection Molding Condition , 2021, Nanomaterials.

[11]  Sakshi Gupta,et al.  Post-γ -irradiation effects on structural, optical and morphological properties of chemical vapour deposited MWCNTs , 2020 .

[12]  J. G. Um,et al.  Engineering investigation for the size effect of graphene oxide derived from graphene nanoplatelets in polyurethane composites , 2020 .

[13]  M. Khil,et al.  Comprehensive study of effects of filler length on mechanical, electrical, and thermal properties of multi-walled carbon nanotube/polyamide 6 composites , 2019, Composites Part A: Applied Science and Manufacturing.

[14]  B. Grady Effect of Melt Processing on Multi-Walled Carbon Nanotube Length , 2019, Processing of Polymer Nanocomposites.

[15]  S. Sankaran,et al.  Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review , 2018, Composites Part A: Applied Science and Manufacturing.

[16]  V. Choudhary,et al.  A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites , 2018 .

[17]  V. Choudhary,et al.  Studies on toughened polycarbonate/multiwalled carbon nanotubes nanocomposites , 2017 .

[18]  Xiang Gao,et al.  Influence of processing parameters during ultrasound assisted extrusion on the properties of polycarbonate/carbon nanotubes composites , 2017 .

[19]  A. Fereidoon,et al.  Electrically conductive polycarbonate/ethylene‐propylene copolymer/multi‐walled carbon nanotubes nanocomposites with improved mechanical properties , 2017 .

[20]  G. Barra,et al.  Hybrid nanocomposites of thermoplastic elastomer and carbon nanoadditives for electromagnetic shielding , 2017 .

[21]  Uttandaraman Sundararaj,et al.  Carbon Nanotube/Graphene Nanoribbon/Polyvinylidene Fluoride Hybrid Nanocomposites: Rheological and Dielectric Properties , 2017 .

[22]  Mohamed R. Berber,et al.  CARBON NANOTUBES CURRENT PROGRESS OF THEIR POLYMER COMPOSITES , 2016 .

[23]  S. Maiti,et al.  Graphene nanoplate and multiwall carbon nanotube–embedded polycarbonate hybrid composites: High electromagnetic interference shielding with low percolation threshold , 2016 .

[24]  Xiang Gao,et al.  Ultrasonic treatment of polycarbonate/carbon nanotubes composites , 2016 .

[25]  S. Kim,et al.  Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes , 2015 .

[26]  Hao‐Bin Zhang,et al.  Electrically conductive polycarbonate/carbon nanotube composites toughened with micron-scale voids , 2015 .

[27]  Bhanu Pratap Singh,et al.  Mechanical and electrical properties of high performance MWCNT/polycarbonate composites prepared by an industrial viable twin screw extruder with back flow channel , 2014 .

[28]  P. Pötschke,et al.  Dispersability of multiwalled carbon nanotubes in polycarbonate-chloroform solutions , 2014 .

[29]  Mohammed H Al-Saleh,et al.  Impedance characteristics and conductivity of CNT/ABS nanocomposites , 2013 .

[30]  T. Vo,et al.  Effect of carbon nanotube lengths on the mechanical properties of epoxy resin: An experimental study , 2013 .

[31]  Li Liu,et al.  Relations between carbon nanotubes' length and their composites' mechanical and functional performance , 2013 .

[32]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[33]  R. Boldt,et al.  Influence of dry grinding in a ball mill on the length of multiwalled carbon nanotubes and their dispersion and percolation behaviour in melt mixed polycarbonate composites , 2011 .

[34]  R. Boldt,et al.  A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing , 2011 .

[35]  Roham Rafiee,et al.  Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites , 2010 .

[36]  G. Heinrich,et al.  Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate , 2010 .

[37]  S. Fu,et al.  The reduction of carbon nanotube (CNT) length during the manufacture of CNT/polymer composites and a method to simultaneously determine the resulting CNT and interfacial strengths , 2009 .

[38]  Uttandaraman Sundararaj,et al.  Electromagnetic interference shielding mechanisms of CNT/polymer composites , 2009 .

[39]  W. Jo,et al.  A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites , 2009 .

[40]  Petra Pötschke,et al.  Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts , 2008 .

[41]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[42]  B. Satapathy,et al.  Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites , 2007 .

[43]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[44]  B. Satapathy,et al.  Crack Toughness Behaviour of Multiwalled Carbon Nanotube (MWNT)/Polycarbonate Nanocomposites , 2005 .

[45]  A. R. Ruiz-Salvador,et al.  An elementary picture of dielectric spectroscopy in solids: Physical basis , 2003 .

[46]  Petra Pötschke,et al.  Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites , 2003 .

[47]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[48]  Donald R Paul,et al.  Rheological behavior of multiwalled carbon nanotube/polycarbonate composites , 2002 .

[49]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[50]  Dan D. Edie,et al.  Carbon-Carbon Materials and Composites , 1994 .

[51]  F. Tuinstra,et al.  Characterization of Graphite Fiber Surfaces with Raman Spectroscopy , 1970 .

[52]  B. Kandasubramanian,et al.  Polycarbonate Nanocomposites for High Impact Applications , 2021, Handbook of Consumer Nanoproducts.

[53]  Ayesha Kausar A review of filled and pristine polycarbonate blends and their applications , 2018 .

[54]  Jikui Wang,et al.  Preparation of antistatic high‐density polyethylene composites based on synergistic effect of graphene nanoplatelets and multi‐walled carbon nanotubes , 2018 .

[55]  B. Grady,et al.  Aspect Ratio Effects of Multi-Walled Carbon Nanotubes on Electrical, Mechanical, and Thermal Properties of Polycarbonate/MWCNT Composites , 2014 .

[56]  R. Woods,et al.  Chemical Resistance of Polycarbonate , 1998 .

[57]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.