Improved wall weight function with polygon boundary in moving particle semi-implicit method

A wall boundary condition represented by polygons was presented by Harada et al. based on the moving particle semi-implicit (MPS) method to reduce the memory cost and calculation time for the wall particles. However, the inaccuracy of the wall weight function near a non-planar wall boundary causes the unphysical motion of the fluid. Therefore, this paper proposes an improved wall weight function for non-planar wall boundaries. Hydrostatic and dam break simulations with and without a wedge in a water tank are conducted to demonstrate the improvement.

[1]  S. Miyama,et al.  Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics , 1994 .

[2]  Joe J. Monaghan,et al.  SPH particle boundary forces for arbitrary boundaries , 2009, Comput. Phys. Commun..

[3]  Bertrand Alessandrini,et al.  Normal flux method at the boundary for SPH , 2009 .

[4]  Dominique Laurence,et al.  Unified semi‐analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method , 2013 .

[5]  A. Colagrossi,et al.  δ-SPH model for simulating violent impact flows , 2011 .

[6]  Roland W. Lewis,et al.  A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications , 2004 .

[7]  Gyoodong Jeun,et al.  Coupling of rigid body dynamics and moving particle semi-implicit method for simulating isothermal multi-phase fluid interactions , 2011 .

[8]  Rui Xu,et al.  Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method , 2008, J. Comput. Phys..

[9]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[10]  James J. Feng,et al.  Pressure boundary conditions for computing incompressible flows with SPH , 2011, J. Comput. Phys..

[11]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[12]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[13]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[14]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[15]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[16]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[17]  Christophe Kassiotis,et al.  Unified semi-analytical wall boundary conditions in SPH: analytical extension to 3-D , 2014, Numerical Algorithms.

[18]  Damien Violeau,et al.  Numerical modelling of complex turbulent free‐surface flows with the SPH method: an overview , 2007 .

[19]  Leigh McCue-Weil,et al.  SPH Boundary Deficiency Correction for Improved Boundary Conditions at Deformable Surfaces , 2010 .

[20]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[21]  Nikolaus A. Adams,et al.  A generalized wall boundary condition for smoothed particle hydrodynamics , 2012, J. Comput. Phys..

[22]  Afzal Suleman,et al.  SPH with the multiple boundary tangent method , 2009 .

[23]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[24]  Bertrand Alessandrini,et al.  Specific pre/post treatments for 3-D SPH applications through massive HPC simulations , 2009 .

[25]  Moo-Hyun Kim,et al.  Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads , 2011 .

[26]  Mehrdad T. Manzari,et al.  A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows , 2012 .

[27]  Seiichi KOSHIZUKA,et al.  Improvement of Wall Boundary Calculation Model for MPS Method , 2008 .

[28]  Jose L. Cercos-Pita,et al.  A Boundary Integral SPH Formulation --- Consistency and Applications to ISPH and WCSPH --- , 2012 .

[29]  Elie Rivoalen,et al.  JOSEPHINE: A parallel SPH code for free-surface flows , 2012, Comput. Phys. Commun..

[30]  Christophe Kassiotis,et al.  Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH , 2014, J. Comput. Phys..

[31]  Javier Bonet,et al.  Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems , 2007 .