Comparison of thermochemistry of aspartame (artificial sweetener) and glucose.

[1]  N. Russo,et al.  Structural and electronic characterization of the complexes obtained by the interaction between bare and hydrated first-row transition-metal ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+) and glycine , 2006 .

[2]  Eric V. Anslyn,et al.  Modern Physical Organic Chemistry , 2005 .

[3]  S. Çakır,et al.  Electrochemical study of the complexes of aspartame with Cu(II), Ni(II) and Zn(II) ions in the aqueous medium. , 2003, Carbohydrate research.

[4]  N. Russo,et al.  Interaction of Li+, Na+, and K+ with the Proline Amino Acid. Complexation Modes, Potential Energy Profiles, and Metal Ion Affinities , 2003 .

[5]  N. Russo,et al.  Potential energy surfaces for the gas-phase interaction between alpha-alanine and alkali metal Ions (Li+, Na+, K+). A density functional study. , 2001, Inorganic chemistry.

[6]  L. Newman,et al.  Migraine MLT‐Down: An Unusual Presentation of Migraine in Patients With Aspartame‐Triggered Headaches , 2001, Headache.

[7]  N. Russo,et al.  Bond energies and attachments sites of sodium and potassium cations to DNA and RNA nucleic acid bases in the gas phase. , 2001, Journal of the American Chemical Society.

[8]  A. Edmundson,et al.  Aspartame effect in sickle cell anemia , 2001, Clinical pharmacology and therapeutics.

[9]  G. C. Wagner,et al.  Acute effects of aspartame on aggression and neurochemistry of rats. , 2000, Life sciences.

[10]  N. Russo,et al.  Gas-phase metal ion (Li+, Na+, Cu+) affinities of glycine and alanine. , 2000, Journal of inorganic biochemistry.

[11]  C. Wesdemiotis,et al.  Probing the interaction of alkali and transition metal ions with bradykinin and its des-arginine derivatives via matrix-assisted laser desorption/ionization and postsource decay mass spectrometry , 1999 .

[12]  Christophe Chipot,et al.  Cation−π Interactions in Proteins: Can Simple Models Provide an Accurate Description? , 1999 .

[13]  C. Wesdemiotis,et al.  Thermochemistry and structures of Na+ coordinated mono- and disaccharide stereoisomers , 1999 .

[14]  J. Bertrán,et al.  The Different Nature of Bonding in Cu+-Glycine and Cu2+-Glycine , 1999 .

[15]  D. Schomer,et al.  Aspartame: neuropsychologic and neurophysiologic evaluation of acute and chronic effects. , 1998, The American journal of clinical nutrition.

[16]  G. Ohanessian,et al.  Interaction of Alkali Metal Cations (Li+–Cs+) with Glycine in the Gas Phase: A Theoretical Study , 1998 .

[17]  Danièle Giron,et al.  Contribution of thermal methods and related techniques to the rational development of pharmaceuticals—Part 1 , 1998 .

[18]  Donald G. Truhlar,et al.  Factors controlling relative stability of anomers and hydroxymethyl conformers of glucopyranose , 1998, J. Comput. Chem..

[19]  G. Scriba,et al.  Determination of aspartame and its degradation and epimerization products by capillary electrophoresis. , 1998, Journal of pharmaceutical and biomedical analysis.

[20]  D. A. Dougherty,et al.  The Cationminus signpi Interaction. , 1997, Chemical reviews.

[21]  Su-Young Kim,et al.  Photodecomposition of aspartame in aqueous solutions , 1997 .

[22]  G. Anderegg,et al.  Equilibrium studies of aspartame and some of its degradation products with hydrogen(I) and copper(II) under physiological conditions using potentiometric pH measurements , 1997 .

[23]  J. Cowan Inorganic Biochemistry: An Introduction , 1997 .

[24]  C. Cassady,et al.  Ab Initio and Experimental Studies on the Protonation of Glucose in the Gas Phase , 1996 .

[25]  C. Mulligan,et al.  Simple and rapid high-performance liquid chromatographic method for the determination of aspartame and its metabolites in foods. , 1996, Journal of chromatography. A.

[26]  D. A. Dougherty,et al.  Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp , 1996, Science.

[27]  James W. Brown,et al.  AB INITIO STUDIES OF THE EXOCYCLIC HYDROXYMETHYL ROTATIONAL SURFACE IN ALPHA -D-GLUCOPYRANOSE , 1996 .

[28]  M. Gross,et al.  Influences of peptide side chains on the metal ion binding site in metal ion-cationized peptides: Participation of aromatic rings in metal chelation , 1995, Journal of the American Society for Mass Spectrometry.

[29]  G. Galletti,et al.  Thermal decomposition products of aspartame as determined by pyrolysis-gas chromatography/mass spectrometry , 1995 .

[30]  Peter A. Kollman,et al.  Cation-.pi. Interactions: Nonadditive Effects Are Critical in Their Accurate Representation , 1995 .

[31]  R. Hooft,et al.  Molecular dynamics study of conformational and anomeric equilibria in aqueous D-glucose , 1993 .

[32]  Donald G. Truhlar,et al.  Quantum Chemical Conformational Analysis of Glucose in Aqueous Solution , 1993 .

[33]  J. R. Flores High precision atomic computations from finite element techniques: Second‐order correlation energies of rare gas atoms , 1993 .

[34]  C. S. Ewig,et al.  Ab Initio computed molecular structures and energies of the conformers of glucose , 1992 .

[35]  Bruce Tidor,et al.  Solvent effect on the anomeric equilibrium in D-glucose: a free energy simulation analysis , 1991 .

[36]  S. Wilkinson,et al.  Carbohydrate Chemistry: Monosaccharides and Their Oligomers , 1988 .

[37]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[38]  R. Zare,et al.  Electrokinetic resolution of amino acid enantiomers with copper(II)―aspartame support electrolyte , 1987 .

[39]  Stephen J. Angyal,et al.  The composition of reducing sugars in solution , 1984 .

[40]  R. Martin,et al.  Proximity of metal ions and hydrocarbon side chains of chelated .alpha.-amino acids and peptides , 1980 .

[41]  M. Sabat,et al.  X-ray evidence of the metal ion tyrosine aromatic ring interaction in bis(L-tyrosinato)palladium(II) , 1979 .

[42]  David R. Williams,et al.  Computer simulation of metal-ion equilibria in biofluids: models for the low-molecular-weight complex distribution of calcium(II), magnesium(II), manganese(II), iron(III), copper(II), zinc(II), and lead(II) ions in human blood plasma , 1977 .

[43]  David R. Williams,et al.  Thermodynamic considerations in co-ordination. Part XXIII. Formation constants for complexes of protons, zinc(II), and acid anions and their use in computer evaluation of a better zinc therapeutical , 1976 .

[44]  D. V. D. Helm,et al.  The crystal structure of bis‐(l‐tyrosinato)copper(II) , 1972 .

[45]  D. V. D. Helm,et al.  The crystal and molecular structure of the dimeric copper(II) chelate of glycyl-l-leucyl-l-tyrosine , 1971 .